Influence of porosity on filtration of biological fluid through a two-layer capillary wall
On the basis of proposed new filtration model the peculiarities of concentration distribution of component carried by two-component biological liquid and fluid velocity in capillary with two-layer porous walls in steady-state mode are studied. Mathematical model takes into account such important phenomena as concentration expansion and viscosity dependence on concentration. The fluid flow corresponds to the Brinkman model. Dimensionless complexes linking characteristic physical scales of different phenomena are highlighted. Influence of model parameters on biological liquid filtration process for capillary wall layers with different porosity is analyzed. The peculiarities of flow regime and distribution of component concentration for different characteristics of internal porous layer (porosity, phase mobility, size) are revealed.
Keywords
filtration,
diffusion,
porosity,
capillaryAuthors
Nazarenko N.N. | Institute of Strength Physics and Materials Science of SB RAS | nnelli@ispms.tsc.ru |
Knyazeva A.G. | Institute of Strength Physics and Materials Science of SB RAS | anna-knyazeva@mail.ru |
Всего: 2
References
Шарипова А.Ф., Псахье С.Г., Готман И., Гутманас Э.Ю. // Физич. мезомех. - 2019. - Т. 22. - № 1. - С. 36-43.
Комарова Е.Г., Седельникова М.Б., Казанцева Е.А. и др. // Изв. вузов. Физика. - 2020. - Т. 63. - № 7. - С. 131-138.
Медведев А.Е. // Российский журнал биомеханики. - 2013. - Т. 17. - № 4(62). - С. 22-36.
Mondaini R.P. Trends in Biomathematics: Modeling, Optimization and Computational Problems. - Switzerland: Springer, 2018. - 423 р.
Шабрыкина Н.С. // Российский журнал биомеханики. - 2005. - Т. 9. - № 3. - С. 70-88.
Оверко В.С., Бескровная М.В. // Вестник НТУ. - 2013. - № 5. - С. 211-220.
Кисляков Ю.Я., Кислякова Л.П. // Научное приборостроение. - 2000. - Т. 10. - № 1. - С. 44-51.
Назаренко Н.Н. // Изв. вузов. Физика. - 2020. - Т. 63. - №5. - С. 45-49.
Nield D.A. and Bejan A. Convection in Porous Media. - N.Y.: Springer, 2013. - 778 p.
Ortega J.M. and Poole W.G. Numerical Methods for Differential Equations. - London: Pitman, 1981. - 329 p.
Roache P.J. Fundamentals of Compzutational Fluid Dynamics. - New Mexico: Hermosa Publishers, 1998. - 434 p.
Виргильев Ю.С. и др. // Конструкционные материалы на основе углерода. - М.: Металлургия, 1975. - № 10. - С. 136-139.
Multiscale Biomechanics and Tribology of Inorganic and Organic Systems. In Memory of Professor Sergey Psakhie / eds. by Georg-Peter Ostermeyer, V.L. Popov, E.V. Shilko, and O.S. Vasiljeva. - Cham: Springer, 2020. - P. 503-520.