Ultrasonic rate changes bytension of the Fe-Cr-Ni alloy at 180-318 K
Investigations of the mechanical characteristics and changes in the propagation velocity of ultrasound (Rayleigh waves) during plastic deformation of the Fe-Ni-Cr alloy in the temperature range 180 ≤ T ≤ 318 K. The implementation of the method for measuring the velocity of Rayleigh waves consisted in the periodic generation of rectangular pulses with a duration of 100 ns at the input of the radiating piezoelectric transducer and registration of the wave passed through the sample by means of a receiving piezoelectric transducer connected to a digital oscilloscope. It was found that a decrease in the temperature of the alloy under study changes not only the type of the deformation curve under uniaxial tension, but also changes the character of the dependence of the ultrasound velocity on deformation and stresses associated with the growth of the martensitic α'-phase formed as a result of γ-α'- phase transformation.
Keywords
plasticity,
deformation,
strength,
ultrasound speedAuthors
Barannikova S.A. | Institute of Strength Physics and Materials Science, SB RAS | bsa@ispms.tsc.ru |
Kolosov S.V. | Institute of Strength Physics and Materials Science, SB RAS | svk@ispms.tsc.ru |
Nikonova A.M. | Institute of Strength Physics and Materials Science, SB RAS | zharmukhambetova@gmail.com |
Всего: 3
References
Pelleg J. Mechanical Properties of Materials. - Dordrecht: Springer, 2013. - 634 p.
Бойко В.С., Гарбер Р.И., Косевич А.М. Обратимая пластичность кристаллов. - М.: Наука, 1991. - 279 с.
Лебедев А.Б. // ФТТ. - 1993. - Т. 35. - № 9. - С. 2305-2341.
Блантер М.С., Головин И.С., Головин С.А. и др. Механическая спектроскопия металлических материалов. - М.: Изд-во МИА, 1994. - 255 с.
Муравьев В.В., Зуев Л.Б., Комаров К.Л. Скорость звука и структура сталей и сплавов. - Новосибирск: Наука, 1996. - 184 с.
Kobayashi M. // Int. J. Plast. - 2010. - V. 26. - No. 1. - P. 107-125.
Ding X., Wu X., and Wang Y. // Ultrasonics. - 2014. - V. 54. - No. 3. - P. 914-920.
Torello D., Thiele S., Matlack K.H., et al. // Ultrasonics. - 2015. - V. 56. - P. 417-426.
Marcantonio V., Monarca D., Colantoni A., and Cecchini M. // Mech. Syst. Sig. Proc. - 2019. - V. 120. - P. 32-42.
Barannikova S.A., Bochkareva A.V., Lunev A.G., et al. // Steel Trans. - 2016. - V. 46. - No. 8. - P. 552-557.
Lunev A.G., Nadezhkin M.V., Barannikova S.A., and Zuev L.B. // Acta Phys. Pol. A. - 2018. - V. 134. - No. 1. - P. 342-345.
Баранникова С.А., Лунёв А.Г., Бочкарева А.В., Зуев Л.Б. // Изв. вузов. Физика. - 2015. - Т. 58. - № 6/2.- С. 20-24.
Talonen J., Nenonen P., Pape G., and Hanninen H. // Metall. Mater. Trans. A. - 2005. - V. 36. - No. 2. - P. 421-32.
Spencer K., Embury J.D., Conlon K.T., et al. // Mat. Sci. Eng. A. - 2004. - V. 387. - P. 873-881.
Hahnenberger F., Skorupski R., Smaga M., and Eifler D. // Mater. Sci. Forum. - 2013. - V. 738-739. - P. 217-221.
Mallick P., Tewary N.K., Ghosh S.K., and Chattopadhyay P.P. // Mater. Charact. - 2017. - V. 133. - P. 77-86.
Zheng C. and Yu W. // Mater. Sci. Eng. A. - 2018. - V. 710. - P. 359-365.
Фрост Г.Дж., Эшби М.Ф. Карты механизмов деформации. - Челябинск: Металлургия, 1989. - 328 с.