Influence of metallic and oxide intermediate layers on adhesive properties of Ti3Al/Al2O3 interface | Izvestiya vuzov. Fizika. 2021. № 4. DOI: 10.17223/00213411/64/4/24

Influence of metallic and oxide intermediate layers on adhesive properties of Ti3Al/Al2O3 interface

Using projector augmented-wave method within the electron density functional theory a systematic study of the atomic and electronic structure of the α2-Ti3Al/α-Al2O3(0001) interface with intermediate metallic (Nb, Mo, Ni, Re) and oxide (Nb2O5, MoO3) layers was performed. The work of separation at the interfaces in dependence on a cleavage plane was calculated. It was shown that high values of adhesion energy obtained at the interface with the O-terminated α-Al2O3 are decreased at the α2-Ti3Al/Me interface but they remain high at the Me/α-Al2O3(0001)O due to the large ionic contribution to the chemical bonding. The influence of impurity oxide layers on the adhesive properties of the alloy-oxide interface is discussed as well. The obtained results indicate that the fracture will occur in the impurity oxide.

Download file
Counter downloads: 44

Keywords

interface, adhesion, chemical bonding, electronic structure, density functional theory

Authors

NameOrganizationE-mail
Bakulin A.V.Institute of Strength Physics and Materials Science of SB RASbakulin@ispms.tsc.ru
Kulkov S.S.Institute of Strength Physics and Materials Science of SB RASsskulkov@ispms.tsc.ru
Kulkova S.E.Institute of Strength Physics and Materials Science of SB RASkulkova@ms.tsc.ru
Всего: 3

References

Li Z. and Gao W. High Temperature Corrosion of Intermetallics / ed. Y.N. Berdovsky. Intermetallics research progress. - Ne.Y.: Nova Science Publishers, 2008. - P. 1-64.
Dai J., Zhu J., Chen C., et al. // J. Alloys Compd. - 2016. - V. 685. - P. 784-798.
Shanabarger M.R. // Appl. Surf. Sci. - 1998. - V. 134. - P. 179-186.
Maurice V., Despert G., Zanna S., et al. // Acta Mater. - 2007. - V. 55. - P. 3315-3325.
Finnis M.W. // J. Phys.: Condens. Matter. - 1996. - V. 8. - P. 5811-5836.
Kruse C., Finnis M.W., Lin J.S., et al. // Philos. Mag. Lett. - 1996. - V. 73. - P. 377-383.
Batirev I.G., Alavi A., Finnis M.W., et al. // Phys. Rev. Lett. - 1999. - V. 82. - P. 1510-1513.
Еремеев С.В., Немирович-Данченко Л.Ю., Кулькова С.Е. // ФТТ. - 2008. - Т. 50. - Вып. 3. - С. 523-532.
Мельников В.В., Кулькова С.Е. // ЖЭТФ. - 2012. - Т. 141. - Вып. 2. - С. 345-354.
Wang B., Dai J., Wu X., et al. // Intermetallics. - 2015. - V. 60. - P. 58-65.
Rose J.H., Ferrante J., and Smith J.R. // Phys. Rev. Lett. - 1981. - V. 47. - P. 675.
Бакулин А.В., Кульков С.С., Кулькова С.Е. // Изв. вузов. Физика. - 2020.- Т. 63. - Вып. 5. - С. 3-9.
Siegel D.J., Hector L.G., and Adams J.B. // Phys. Rev. B. - 2002. - V. 65. - P. 085415-1-19.
Bakulin A.V., Kulkov S.S., and Kulkova S.E. // Appl. Surf. Sci. - 2021. - V. 536. - P. 147639-1-10.
Le H.L.T., Goniakowski J., Noguera C., et al. // J. Phys. Chem. C. - 2016. - V. 120. - P. 9836-9844.
Umakoshi Y., Yamaguchi M., Sakagami T., et al. // J. Mater. Sci. - 1989. - V. 24. - P. 1599-1603.
Zhao P., Li X., Tang H., et al. // Oxid. Met. - 2020. - V. 93. - P. 433-448.
Goral M., Moskal G., and Swadzba L. // Intermetallics. - 2009. - V. 17. - P. 669-671.
Gui W., Liang Y., Hao G., et al. // J. Alloy Compd. - 2018. - V. 744. - P. 463-469.
Blöchl P.E. // Phys. Rev. B. - 1994. - V. 50. - P. 17953-17979.
Kresse S. and Joubert J. // Phys. Rev. B. - 1999. - V. 59. - P. 1758-1775.
Perdew J.P., Burke K., and Ernzerhof M. // Phys. Rev. Lett. - 1996. - V. 77. - P. 3865-3868.
Villars P. and Calvert L.D. // Pearson’s Handbook of Crystallographic Data for Intermetallic Phases. - Materials Park, OH, ASM International, 1991. - 5366 p.
Lucht M., Lerche M., Wille H.-C., et al. // J. Appl. Cryst. - 2003. - V. 36. - P. 1075-1081.
Zhang Z., Zhang R.F., Legut D., et al. // Phys. Chem. Chem. Phys. - 2016. - V. 18. - P. 22864- 22873.
Кулькова С.Е., Еремеев С.В., Hocker S. и др. // ФТТ. - 2010. - Т. 52. - С. 2421-2427.
Hocker S., Schmauder S., Bakulin A., et al. // Philos. Mag. - 2014. - V. 94. - P. 265-284.
Dronskowski R. and Blöchl P.E. // J. Phys. Chem. - 1993. - V. 97. - P. 8617-8624.
Chen G., Sun Z., and Zhou X. // Corrosion. - 1992. - V. 48. - P. 939-946.
Mungole M.N., Balasubramaniam R., and Ghosh A. // Intermetallics. - 2000. - V. 8. - P. 717-720.
Jain A., Ong S.P., Hautier G., et al. // APL Materials. - 2013. - V. 1. - P. 011002-1-11.
Pinto M.B., Soares A.L., Jr., Quantao M.C., et al. // J. Phys. Chem. C. - 2018. - V. 122. - P. 6618-6628.
Qu Q., Zhang W.B., Huang K., et al. // Comput. Mater. Sci. - 2017. - V. 130. -P. 242-248.
 Influence of metallic and oxide intermediate layers on adhesive properties of Ti<sub>3</sub>Al/Al<sub>2</sub>O<sub>3</sub> interface | Izvestiya vuzov. Fizika. 2021. № 4. DOI: 10.17223/00213411/64/4/24

Influence of metallic and oxide intermediate layers on adhesive properties of Ti3Al/Al2O3 interface | Izvestiya vuzov. Fizika. 2021. № 4. DOI: 10.17223/00213411/64/4/24