The tested area Increasing at measuring of the deformation of a solid by the digital image correlation technique
To optimize materials composition and its microstructure, it needs to know the mechanisms of plastic flow and crack resistance. Now the most effective technique is referred to digital image correlation method (DIC) due to low error and relatively simple data processing. Optical microscopy is also used, but the tested square diminishes. The main ways, related to increasing a surface area of tested material with DIC of the same error, are briefly considered. It is shown, that this problem can be solved by stitching of overlapped images or by related displacement fields to form full vector field. Another way is to diminish the optical magnification or/and use sub-pixel accuracy. This approach is illustrated on the example of welded joints at fatigue.
Keywords
deformation,
displacement vector field,
digital image correlation technique,
sliding window algorithm,
sub-pixel accuracy,
welded jointsAuthors
Kibitkin V.V. | Institute of Strength Physics and Materials Science of SB RAS | vvk@ispms.tsc.ru |
Solodushkin A.I. | Institute of Strength Physics and Materials Science of SB RAS | s.ai@ispms.tsc.ru |
Всего: 2
References
Пригоровский Н.И. Методы и средства определения полей деформаций и напряжений: справочник. - М.: Машиностроение, 1983. - 248 с.
Баранникова С.А., Косинов Д.А., Надежкин М.В. и др. // Изв. вузов. Физика. - 2014. - Т. 57. - № 3. - С. 101-107.
Sutton M.A., Orteu J.J., and Schreier H.W. Image Correlation for Shape, Motion and Deformation Measurements. - Springer, 2009. - 321 p.
Paul S.K., Roy S., Sivaprasad S., and Tarafder S. // Phys. Mesomech. - 2019. - V. 22. - No. 4. - P. 340-344.
Кибиткин В.В., Солодушкин А.И., Плешанов В.С. // Дефектоскопия. - 2011. - № 1. - С. 84- 97.
Кибиткин В.В., Солодушкин А.И., Плешанов В.С., Лычагин Д.В. // Автометрия. - 2011. - Т. 47. - Вып. 4. - С. 83-90.
Zitova B. and Flusser J. // Image Vision Computing. - 2003. - V. 21. - No. 11. - P. 977-1000.
Kaneko S., Satoh Y., and Igarashi S. // Pattern Recognition. - 2003. - V. 36. - No. 5. - P. 1165-1173.
Trujillo L. and Olague G. // Evolution. Comput. - 2008. - V. 16. - No. 4. - P. 483-507.
Солодушкин А.И., Кибиткин В.В., Плешанов В.С. // Известия Томского политехнического университета. - 2011. - Т. 318. - Вып. 5. - С. 48-51.
Yaofeng S. and Pang H.L. // Opt. Lasers Eng. - 2007. - V. 45. - No. 9. - P. 967-974.
Debella-Gilo M. and Kääb A. // ISPRS J. Photogram. and Remote Sensing. - 2012. - V. 69. - P. 10-28.
Kibitkin V., Solodushkin A., Pleshanov V., and Napryushkin A. // Measurement. - 2017. - V. 95. - P. 266-272.
Valla A., Konnerth J., Keunecke D., et al. // Wood Sci. Technol. - 2011. - V. 45. - P. 755-765.
Lava P., Cooreman S., Coppieters S., et al. // Opt. Lasers Eng. - 2009. - V. 47. - No. 7-8. - P. 747-753.