Influence of severe plastic deformation andsubsequent annealing on structure and mechanical properties of titanium alloy VT35 | Izvestiya vuzov. Fizika. 2021. № 4. DOI: 10.17223/00213411/64/4/67

Influence of severe plastic deformation andsubsequent annealing on structure and mechanical properties of titanium alloy VT35

The study of the effect of severe plastic deformation by multiple pressing and subsequent annealing on the structure and mechanical properties of the titanium alloy VT35 was conducted. It was shown that the formation of an ultrafine-grained structure leads to an increase in the mechanical properties of the alloy at room temperature by 40-60% compared to the initial coarse-grained state. Subsequent annealing of ultrafine-grained VT35 alloy at a temperature of 773 K leads to an increase in the homogeneity of the structure formed after multiple pressing, without an increase in the average size of the elements of the grain-subgrain structure and additional precipitation of fine particles of the α-phase in the bulk of β-grains. It can be assumed that the indicated structural changes lead to an increase in the mechanical properties of the alloy at room temperature. With a further increase in the annealing temperature to 873 K the development a recrystallization related phenomena is observed. The average size of the elements of the grain-subgrain structure increases and as a result the mechanical properties of ultrafine-grained VT35 alloy sharply decrease. It has been established that an increase in the total imposed strain degree in the temperature range of 773-823 K during processing the VT35 alloy pressing leads to an additional increase in its mechanical properties at room temperature up to 65-70% in comparison with the initial coarse-grained state.

Download file
Counter downloads: 41

Keywords

titanium alloys, severe plastic deformation, ultrafine-grained structure, phase transformations, annealing, mechanical properties

Authors

NameOrganizationE-mail
Ratochka I.V.Institute of Strength Physics and Materials Science of SB RASivr@ispms.tsc.ru
Naydenkin E.V.Institute of Strength Physics and Materials Science of SB RASnev@ispms.tsc.ru
Lykova O.N.Institute of Strength Physics and Materials Science of SB RASlon8@yandex.ru
Mishin I.P.Institute of Strength Physics and Materials Science of SB RASmip@ispms.tsc.ru
Всего: 4

References

Валиев Р.З., Александров И.В. Объемные наноструктурные металлические материалы. - М.: ИКЦ «Академкнига», 2007. - 398 с.
Колобов Ю.Р., Валиев Р.З., Грабовецкая Г.П. и др. Зернограничная диффузия и свойства наноструктурных материалов. - Новосибирск: Наука, 2001. - 232 с.
Meyers M.A., Mishra A., and Benson D.J. // Prog. Mater. Sci. - 2006. - V. 51. - P. 427-556.
Naydenkin E.V., Ratochka I.V., and Grabovetskaya G.P. // Mater. Sci. Forum. - 2011. - V. 667-669. - P. 1183-1188.
Valiev R.Z., Zhilyaev A.P., and Langdon T.G Bulk Nanostructured Materials: Fundamentals and Applications - New Jersey: Wiley, 2013.
Naydenkin E.V., Ratochka I.V., Mishin I.P., et al. // J. Mater. Sci. - 2017. - V. 52. - No. 8. - P. 4164-4171.
Zherebtsov S.V., Kudryavtsev E.A., Salishchev G.A., et al. // Acta Mater. - 2016. - V. 121. - P. 152-163.
Matsumoto H., Yoshida K., Lee S.-H., et al. // Mater. Lett. - 2013. - V. 98. - P. 209-212.
Грабовецкая Г.П., Забудченко О.В., Мишин И.П. и др. // Изв. вузов. Физика. - 2019. - Т. 62. - № 8. - С. 21-27.
Братухин А.Г. Современные авиационные материалы: технологические и функциональные особенности: учеб. пособие для авиационных и технических направлений и специальностей. - М.: АвиаТех Информ ХХI век, 2001. - 420 c.
Lütjering G. and Williams JC. Titanium. Engineering Materials, Processes. - Berlin: Springer, 2007. - P. 1-39.
Mouritz A. Introduction to Aerospace Materials. - Woodhead Publishing Ltd, 2012. - 621 p.
Цвикер У. Титан и его сплавы. - М.: Металлургия, 1979. - 512 с.
Ильин А.А., Колачев Б.А., Полькин И.С. Титановые сплавы. Состав, структура, свойства: справочник. - М.: ВИЛС-МАТИ, 2009. - 520 с.
Хорев А.И. // Материаловедение. - 2009. - № 4. - С. 28-36.
Ahmed M., Savvakin D.G., Ivasishin O.M., and Pereloma E.V. // Mater. Sci. Eng. A. - 2014. - V. 605. - P. 89-97.
Шаболдо О.П., Виторский Я.М., Сагарадзе В.В. и др. // ФММ. - 2017. - Т. 118. - № 1. - С. 79-84.
Ruifeng Donga, Jinshan Li, Hongchao Koua, et al. // J. Mater. Sci. Technol. - 2019. - V. 15. - P. 48-54.
Ширяев А.А., Ночовная Н.А., Помельникова А.С. // Труды ВИАМ. - 2019. - № 10(82). - С. 25-33.
Zhaoxin Dua, Yan Maa, Fei Liua, et al. // Mater. Sci. Eng. A. - 2019. - V. 754. - P. 702-707.
Винокуров В.А., Раточка И.В., Найдёнкин Е.В., Мишин И.П., Рожинцева Н.В. // Патент РФ № 2388566, приоритет 22.07.2008. Опубл. 10.05.2010. Бюл. №13.
Раточка И.В., Лыкова О.Н., Забудченко О.В., Найденкин Е.В. // Изв. вузов. Физика. - 2012. - T. 55. - № 6. - С. 19-23.
Раточка И.В., Лыкова О.Н., Найденкин Е.В. // ФММ. - 2015. - Т. 116. - № 3. - С. 318-324.
Ratochka I.V. and Lykova O.N. // Inorgan. Mater.: Appl. Res. - 2017. - V. 8. - No. 2. - P. 348-352.
 Influence of severe plastic deformation andsubsequent annealing on structure and mechanical properties of titanium alloy VT35 | Izvestiya vuzov. Fizika. 2021. № 4. DOI: 10.17223/00213411/64/4/67

Influence of severe plastic deformation andsubsequent annealing on structure and mechanical properties of titanium alloy VT35 | Izvestiya vuzov. Fizika. 2021. № 4. DOI: 10.17223/00213411/64/4/67