Stress behavior analysis model of steel fiber reinforced concrete beam in the whole process
The traditional desai model cannot calculate the bearing capacity of the beam effectively, which leads to the failure of the beam. In order to solve this problem effectively, a new RAV analysis model was designed to analyze the stress behavior of steel fiber reinforced concrete beams in the whole process. The vertical effect of steel fiber reinforced concrete (SFRC) beams is analyzed by means of rod element simulation. The analysis results of the beam's large displacement effect are determined with the support of multi-stage displacement. Based on the above two physical quantities, the stress finite element equation of the whole process is determined. According to the finite element equation, the reliability and response characteristics of the beam are analyzed, and a new RAV behavior analysis model is established. The results show that compared with the DESAI model, the new RAV model can improve the accuracy of calculating the bearing capacity limit of the beam by about 40% under the conditions of high, medium and low nonlinear stresses.
Keywords
steel fiber reinforced concrete,
stress behavior analysis,
research model,
sag effect,
finite element equation,
reliability,
stress response characteristics,
stress influence lawAuthors
Dong Luo | Information Technology Centre, Chongqing Jiaotong University | 15922957776@163.com |
Всего: 1
References
Mobasher B., Yao Y., and Soranakom C. // Eng. Struct. - 2015. - V. 25. - No. 17. - P. 164-177.
Fasheng Z., Yining D., Jing X., et al. // Eng. Struct. - 2016. - V. 32. - No. 12. - P. 101-116.
Xu L., Chen P., Huang L., et al. // China Civil Eng. J. - 2015. - V. 48. - No. 4. - P. 15-22.
Xu L., Deng F., Xu H., et al. // Tumu Gongcheng Xuebao/China Civil Eng. J. - 2016. - V. 49. - No. 1. - P. 3-13.
Fasheng Z., Yining D., Jing X., et al. // Eng. Struct. - 2016. - V. 26. - No. 7. - P. 101-116.
Khuram R. and Nosheen B. // Struct. Concr. - 2017. - V. 18. - No. 4. - P. 93-106.
Ali A. et al. // Struct. Concr. - 2018. - V. 19. - No. 10. - P. 36-48.
Pujadas P., Blanco A., Cavalaro S., et al. // Constr. Build. Mater. - 2014. - V. 57. - P. 92-104.
Gao F., Guo J.Y., Yuan H., et al. // Mat. Sci. - 2017. - V. 23. - No. 4. - P. 56-63.
Alberti Marcos G., Enfedaque A., Gálvez Jaime C., et al. // Fibers. - 2015. - V. 3. - No. 4. - P. 504-522.
Babych E.M. and Andriichuk O.V. // Mat. Sci. - 2017. - V. 52. - No. 4. - P. 509-513.
Fatiha I. // Front. Struct. Civ. Eng. - 2018. - V. 12. - No. 4. - P. 439-453.
Doo Y.Y., Nemkumar B., and Young S.Y. // Can. J. Civil. Eng. - 2017. - V. 44. - No. 1. - P. 18-28.
Eythor T.R. and Snaebjornsson J.T. // Solid State Phenom. - 2016. - V. 24. - No. 9. - P. 79-84.
Shuang Y., Hongguang J., Juanhong L., et al. // Anti-Corros. Method. Mater. - 2016. - V. 63. - No. 3. - P. 236-244.
Hou L.J., Ye Z.Y., Zhou B.X., et al. // Struct. Concr. - 2019. - V. 23. - No. 8. - P. 43-56.
Chuan P.Z., Qiao Y.W., Deng H.C., et al. // Acta Mech. Solida Sinica. - 2018. - V. 36. - No. 3. - P. 36-46.
Mustaqqim A.R., Abdul N.A.G., Muhammad A.C.M., et al. // Mater. Sci. Forum. - 2017. - V. 39. - No. 4. - P. 185-188.
Il S.K., Yoon S.C., Chan K.L., et al. // Mater. Sci. Forum. - 2018. - V. 36. - No. 12. - P. 123-127.
Prabin P. and Zhang Y.X. // Struct. Concr. - 2017. - V. 26. - No. 18. - P. 1-9.
Sungnam H. and Sun K.P. // Polym. Composite. - 2017. - V. 38. - No. 3. - P. 22-30.
Farzad R., Lan L. and Khaled G. // Can. J. Civil Eng. - 2018. - V. 45. - No. 6. - P. 504-515.
Wuchao Z. and Jiang Q. // Int. J. Struct. Stab. Dyn. - 2019. - V. 43. - No. 6. - P. 33-43.
Yu J., Ding Y., Xie J., et al. // Tianjin Daxue Xuebao. - 2017. - V. 50. - No. 2. - P. 181-187.
Tang Z.J., Song X.D., and Huang Q. // KSCE Can. J. Civil. Eng. - 2019. - V. 23. - P. 3397-3408.
Cao Q., Zhou J.P., Wanhg X.F., et al. // KSCE J. Civil Eng. - 2018. - V. 22. - No. 1. - P. 196-203.
Liu F., Jili A., Yang D., et al. // Harbin Gongye Daxue Xuebao/J. Harbin Inst. Techn. - 2018. - V. 50. - No. 12. - P. 38-44.
Liu W., Bai N., and Li G. // Jianzhu Jiegou Xuebao/J. Building Struct. - 2018. - V. 39. - P. 36-43.
Yi D.X., Ying Y.Z., Kun D., et al. // J. Southeast University. - 2017. - V. 47. - No. 2. - P. 356-361.
Rashmi R.P. // J. Inst. Eng. - 2017. - V. 98. - No. 5. - P. 1-9.
Marcela N.K., Marcelo A.F., et al. // Eng. Struct. - 2017. - V. 14. - No. 3. - P. 306-315.
Song L. and Yu Z. // Jianzhu Jiegou Xuebao / J. Building Struct. - 2019. - V. 40. - No. 1. - P. 58-66.
Suteera W., Wuttinant K., Jirachaya B., et al. // Key Eng. Mat. - 2017. - V. 751. - P. 779-784.
Constr A.A. // Build. Mater. - 2018. - V. 36. - No. 5. - P. 683-696.
Su P., Li H., Chou J.X., et al. // J. Civil, Archit. Environ. Eng. - 2017. - V. 39. - No. 1. - P. 68-76.
Margaret J S., Shanthi V.M. // J. Comput. Theor. Nanosci. - 2018. - V. 15. - No. 2. - P. 744-751.
Jason D., Sara K., Sreekanta D. // Constr. Build. Mater. - 2018. - V. 17. - No. 6. - P. 470-481.
Aahin R. and Yacl O. // Appl. Math. Nonlinear Sci. - 2020. - V. 5. - No. 1. - P. 369-384.
Aidara S. and Sagna Y. // Appl. Math. Nonlinear Sci. - 2019. - V. 4. - No. 1. - P. 139-150.
Assaye B., Alamneh M., Mishra L.N., et al. // Appl. Math. Nonlinear Sci. - 2019. - V. 4. - No. 1. - P. 151-162.
Yamac K. and Erdogan F. // Appl. Math. Nonlinear Sci. - 2020. - V. 5. - No. 1. - P. 405-412.