An algorithm of blasting parameters for tunnel with complex surrounding rock based on close-range undercrossing roadbed | Izvestiya vuzov. Fizika. 2021. № 4. DOI: 10.17223/00213411/64/4/85

An algorithm of blasting parameters for tunnel with complex surrounding rock based on close-range undercrossing roadbed

Traditionally, when the algorithm of tunnel blasting parameter based on theory of damage mechanics and explosive theory was used to calculate blasting parameters, the complexity of tunnel surrounding rock was not considered and the result was not optimized, which led to the low precision of parameter calculation result. The algorithm of blasting parameters for complex surrounding rock tunnels in close underground subgrade is studied based on genetic support vector regression. By calculating the internal stress of complex surrounding rock, the vibration velocity parameters affecting the stability of surrounding rock are obtained. The parameter calculation model was established by using ANSYS-DYNA numerical simulation software. The model is also used to obtain pressure parameters for complex surrounding rock. A coupling method based on genetic support vector regression is used for parameter optimization. Experimental results show that the proposed method has high accuracy and practicability. It can quickly calculate the parameter of tunnel blasting.

Download file
Counter downloads: 60

Keywords

complex surrounding rock, tunnel blasting, parameter calculation, stability of surrounding rock, parameter of vibration velocity, support vector regression

Authors

NameOrganizationE-mail
Li-Cai Zhao National Taiwan University of Science and Technologyzhaolicai1314@163.com
Shi-Shuenn Chen National Taiwan University of Science and Technologysschen@mail.ntust.edu.tw
Всего: 2

References

Ansari H.R. and Gholami A. // Fluid Phase Equilibria. - 2015. - V. 402. - No. 3. - P. 124-132.
Armaghani D.J., Mohamad E.T., Hajihassani M., et al. // Eng. Comput. - 2016. - V. 32. - No. 1. - P. 109-121.
Bobyr M., Altenbach H., and Khalimon O. // Arch. Appl. Mech. - 2015. - V. 85. - No. 4. - P. 455- 468.
Borogayary B., Das A.K., and Nath A.J. // J. Environ. Biol. - 2018. - V. 39. - No. 1. - P. 67-71.
Wang H.B., Jia H., Xu Y., et al. // Chin. Saf. Prod. Sci. Technol. - 2015. - V. 1. - No. 05. - P. 47-52.
Conti C., Colombo C., Realini M., et al. // J. Raman Spectrosc. - 2015. - V. 46. - No. 5. - P. 476- 482.
Fakeeha A.H., Ibrahim A.A., Khan W.U., et al. // Arab. J. Chem. - 2018. - V. 11. - No. 3. - P. 405-414.
Fernandez-Lozano C., Cedrón F., Rivero D., et al. // Eng. Comput. - 2016. - V. 33. - No. 4. - P. 995-1005.
Foufoula-Georgiou E., Takbiri Z., Czuba J.A., et al. // Water Resour. Res. - 2015. - V. 51. - No. 8. - P. 6649-6671.
Zheng Y. and Qiu C. // Mod. Tunn. Tech. - 2016. - V. 15. - No. 3. - P. 740-764.
Guadalupe Sanchez-Duarte R., Del Rosario Martinez-Macias M., Araceli Correa-Murrieta M., et al. // Rev. Int. Contam. Ambie. - 2017. - V. 33. - No. SI. - P. 93-98.
Hoque M.A., Hassan F.M., Jauhar A.M., et al. // Acs Sustain. Chem. Eng. - 2018. - V. 6. - No. 1. - P. 93-98.
Jin H.F. // Water Conservancy Constr. Manage. - 2017. - V. 71. - No. 5-8. - P. 1087-1092.
Iyit N. // Open Chem. - 2018. - V. 16. - No. 1. - P. 377-385.
Kalteh A.M. // Water Resour. Manage. - 2016. - V. 30. - No. 2. - P. 747-766.
Li Z., Han C., and Gu T. // Energ. Sour. Part B. Econ. Plan. Pol. - 2018. - V. 13. - No. 2. - P. 137-140.
Mcdonnell A.M.P., Boyd P.W., and Buessele R.K.O. // Global Biogeochem. Cycle. - 2015. - V. 29. - No. 2. - P. 175-193.
Mostaghimi P., Percival J.R., Pavlidis D., et al. // Math. Geosci. - 2015. - V. 47. - No. 4. - P. 417-440.
Phantong P., Machikowa T., Saensouk P., and Muangsan N. // Emirates J. Food Agri. - 2018. - V. 30. - No. 2. - P. 157-164.
Safaei-Ghomi J., Enayat-Mehri N., and Eshteghal F. // J. Saudi Chem. Soc. - 2018. - V. 22. - No. 4. - P. 485-495.
Sawan Z.M. // Inf. Proc. Agr. - 2018. - V. 5. - No. 1. - P. 134-148.
Wang M., Zhang D.Q., Su J., et al. // J. Clean. Prod. - 2018. - V. 179. - P. 12-23.
Mohammad R.A., Abolghasem K.R., et al. // Petrol. Explor. Dev. - 2019. - V. 20. - No. 4. - P. 710- 715.
Wang Z., Miao L., Wang R., et al. // Ch. Civ. Eng. J. - 2014. - V. 47. - No. 5. - P. 133-138.
Weidlich P.H., Schnedler M., Portz V., et al. // J. Appl. Phys. - 2015. - V. 118. - No. 3. - P. 113- 117.
Zhao H.B., Long Y., Li X.H., et al. // KSCE J. Civ. Eng. - 2016. - V. 20. - No. 1. - P. 431-439.
Zhong G., Lou Y., Fu Y., and Beijing J. // Inst. Technol. - 2017. - V. 26. - No. 3. - P. 324-333.
Attia G.F., Abdelaziz A.M., and Hassan I.N. // Appl. Math. Nonlinear Sci. - 2017. - V. 2. - No. 1. - P. 151-156.
Baig A.Q., Naeem M., and Gao W. // Appl. Math. Nonlinear Sci. - 2018. - V. 3. - No. 1. - P. 33-40.
Mi C., Shen Y., Mi W.J., and Huang Y.F. // J. Coast. Res. - 2015. - V. 73. - P. 28-34.
Aksoy N.Y. // Appl. Math. Nonlinear Sci. - 2020. - V. 5. - No. 1. - P. 211-220.
Goyal S., Garg P., and Mishra V. N. // Appl. Math. Nonlinear Sci. - 2019. - V. 4. - No. 1. - P. 163- 168.
Atangana A. and Jain S. // Physica A. - 2018. - V. 512. - P. 330-351.
Jain S. and Atangana A. // Int. J. Biomath. - 2018. - V. 11. - No. 08. - P. 87-105.
 An algorithm of blasting parameters for tunnel with complex surrounding rock based on close-range undercrossing roadbed | Izvestiya vuzov. Fizika. 2021. № 4. DOI: 10.17223/00213411/64/4/85

An algorithm of blasting parameters for tunnel with complex surrounding rock based on close-range undercrossing roadbed | Izvestiya vuzov. Fizika. 2021. № 4. DOI: 10.17223/00213411/64/4/85