Dark currents of unipolar barrier structures based on mercury cadmium telluride for long-wave inred detectors | Izvestiya vuzov. Fizika. 2021. № 5. DOI: 10.17223/00213411/64/5/3

Dark currents of unipolar barrier structures based on mercury cadmium telluride for long-wave inred detectors

Two types of long-wave infrared nBn structures based on mercury cadmium telluride grown by molecular beam epitaxy on GaAs (013) substrates have been fabricated. For each type of device, the side walls of the mesa structures were passivated with an Al2O3 dielectric film or left without passivation. The CdTe content in the absorbing layers was 0.20 and 0.21, and in the barrier layers, 0.61 and 0.63. The dark currents of the manufactured devices were studied in a wide range of voltages and temperatures. The values of the surface leakage component are found under various conditions. It has been shown that the surface leakage current density decreases upon passivation with an Al2O3 film. It was found that at room temperature in the fabricated nBn structures with reverse biases, the surface leakage component dominates, and with forward biases, the dark current is determined by the combined effect of the surface leakage component and the bulk current component. From the Arrhenius plots, the values of the activation energies of the surface leakage current component were found, which at small reverse biases are in the range from 0.05 to 0.10 eV. At small reverse biases, upon cooling the samples, the role of the bulk component of the dark current increases, which at 180 K is approximately 0.81 A/cm2. In the temperature range 200-300 K, the values of the dark current density exceed the values calculated according to the empirical Rule07 model by a factor of 10-100, which indicates the possibility of creating long-wave infrared barrier detectors with a decrease in the values of the surface leakage component.

Download file
Counter downloads: 73

Keywords

HgCdTe, molecular beam epitaxy, long-wave infrared detector, nBn structure, dark current, surface leakage, passivation

Authors

NameOrganizationE-mail
Voitsekhovskii A.V.National Research Tomsk State Universityvav43@mail.tsu.ru
Nesmelov S.N.National Research Tomsk State Universitynesm69@mail.ru
Dzyadukh S.M.National Research Tomsk State Universitybonespirit@mail2000.ru
Dvoretsky S.A.National Research Tomsk State University; Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RASdvor@isp.nsc.ru
Mikhailov N.N.Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RASmikhailov@isp.nsc.ru
Sidorov G.Yu.Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RASgeorge@isp.nsc.ru
Yakushev M.V.Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RASyakushev@isp.nsc.ru
Всего: 7

References

Rogalski A. Infrared and Terahertz detectors. - 3rd. ed. - Boca Raton: CRC Press, Taylor & Francis Group, 2019. - 1044 p.
Mollard L., Destefanis G., Bourgeois G., et al. // J. Electron. Mater. - 2011. - V. 40. - P. 1830- 1839.
Izhnin I.I., Mynbaev K.D., Voitsekhovsky A.V., et al. // Infrared Phys. Technol. - 2019. - V. 98. - P. 230-235.
Maimon S. and Wicks G.W. // Appl. Phys. Lett. - 2006. - V. 89. - No. 15. - P. 151109.
Ting D.Z., Soibel A., Khoshakhlagh A., et al. // Appl. Phys. Lett. - 2018. - V. 113. - P. 021101.
Soibel A., Ting D.Z., Rafol S.B., et al. // Appl. Phys. Lett. - 2019. - V. 114. - P. 161103.
Plis E., Myers S.A., Ramirez D.A., et al. // Proc. SPIE. - 2016. - V. 9819. - P. 981911.
Evirgen A., Abautret J., Perez J.P., et al. // Electron. Lett. - 2014. - V. 50. - P. 1472-1473.
Akhavan N.D., Umana-Membreno G.A., Gu R., et al. // IEEE Trans. Electron Dev. - 2018. - V. 65. - No. 10. - P. 4340-4345.
Kopytko M. // Infrared Phys. Technol. - 2014. - V. 64. - P. 47-55.
Uzgur F. and Kocaman S. // Infrared Phys. Technol. - 2019. - V. 97. - P. 123-128.
He J., Wang P., Li Q., et al. // IEEE Trans. Electron Dev. - 2020. - V. 67. - No. 5. - P. 2001-2007.
Itsuno A.M., Phillips J.D., Velicu S. // Appl. Phys. Lett. - 2012. - V. 100. - No. 16. - P. 161102.
Velicu S., Zhao J., Morley M., et al. // Proc. SPIE. - 2012. - V. 8268. - P. 826282X.
Gravrand O., Boulard F., Ferron A., et al. // J. Electron. Mater. - 2015. - V. 44. - No. 9. - P. 3069-3075.
Kopytko M. and Rogalski A. // Prog. Quant. Electron. - 2016. - V. 47. - P. 1-18.
Kopytko M., Jóźwikowski K., Martyniuk P., et al. // J. Electron. Mater. - 2016. - V. 45. - No. 9. - P. 4563-4573.
Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., et al. // Infrared Phys. Technol. - 2019. - V. 102. - P. 103035.
Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., et al. // J. Phys. D: Appl. Phys. - 2019. - V. 53. - P. 055107.
Войцеховский А.В., Несмелов С.Н., Дзядух С.М. и др. // Прикладная физика. - 2020. - № 1. - С. 25-31.
Istuno A.M. Bandgap-engineered HgCdTe infrared detector structures for reduced cooling requirements: Ph.D. diss. - University of Michigan, 2012. - 175 p.
Fu R. and Pattison J. // Opt. Eng. - 2012. - V. 51. - No. 10. - P. 104003.
Zakirov E.R., Kesler V.G., Sidorov G.Y., et al. // Semicond. Sci. Technol. - 2019. - V. 34. - No. 6. - P. 065007.
Zakirov E.R., Kesler V.G., Sidorov G.Y., et al. // Semicond. Sci. Technol. - 2020. - V. 35. - No. 2. - P. 025019.
Handbook of Infrared Detection Technologies / eds. M. Henini and M. Razeghi. - Oxford: Elsevier Advanced Technology, 2002. - 532 p.
Michalczewski K., Ivaldi F., Kubiszyn Ł., et al. // Acta Phys. Pol. A. - 2018. - V. 132. - No. 2. - P. 981-984.
Kopytko M., Gomółka E., Michalczewski K., et al. // Semicond. Sci. Technol. - 2018. - V. 33. - No. 12. - P. 125010.
Du X., Marozas B.T., Savich G.R., et al. // J. Appl. Phys. - 2018. - V. 123. - No. 21. - P. 214504.
Sidor D.E., Savich G.R., and Wicks G.W. // J. Electron. Mater. - 2016. - V. 45. - No. 9. - P. 4663- 4667.
Tennant W.E., Lee D., Zandian M., et al. // J. Electron. Mater. - 2008. - V. 37. - No. 9. - P. 1406- 1410.
 Dark currents of unipolar barrier structures based on mercury cadmium telluride for long-wave inred detectors | Izvestiya vuzov. Fizika. 2021. № 5. DOI: 10.17223/00213411/64/5/3

Dark currents of unipolar barrier structures based on mercury cadmium telluride for long-wave inred detectors | Izvestiya vuzov. Fizika. 2021. № 5. DOI: 10.17223/00213411/64/5/3