Thermal convection in melting zone of hollow microparticle Al2O3 | Izvestiya vuzov. Fizika. 2021. № 5. DOI: 10.17223/00213411/64/5/20

Thermal convection in melting zone of hollow microparticle Al2O3

The paper presents the results of numerical modeling of development melting zone hollow spherical microparticle α-Al2O3. The object of the study was part circular sector, which represents the shell of hollow particle, which is formed under action plasma flow. Numerically describe the unsteady convective heat and mass transfer in shell hollow particle, we used the system Navier-Stokes equations in Boussinesq approximation, which describes the weak convection medium. Due to the high coefficient of porosity (P = 0.56) initial agglomerated particle with the α-Al2O3 structure, the inner region at the stage of heating Tp ≥ Tmelt is in the conditions heat exchange with the incoming heat flux, as result of which the temperature center coincided with the temperature particle surface. Result of overheating of the condensed phase, liquid layer of fused grains is formed in the inner and outer regions microparticle. In this case, the melting front is directed towards center shell. Result of numerical modeling, it has been established that convective heat and mass transfer is observed in melting zones (liquid phase), vector field of which covers almost the entire region of the liquid phase. It was found that thermal convection in the external liquid phase is characterized by velocities that are more than 2 times higher than the displacement velocity in the inner region of the particle. It is shown that there is no displacement of the material inside the convection region, thereby inhomogeneous heating occurs in the molten layer of the particle, which significantly affects the speed of movement of the melting front.

Download file
Counter downloads: 46

Keywords

hollow microparticle α-Al2O3, phase boundaries, plasma, convection, heat and mass transfer, numerical simulation

Authors

NameOrganizationE-mail
Shekhovtsov V.V.Tomsk State University of Architecture and Buildingshehovcov2010@yandex.ru
Abzaev YU.A.Tomsk State University of Architecture and Buildingabzaev@tsuab.ru
Volokitin O.G.Tomsk State University of Architecture and Buildingvolokitin_oleg@mail.ru
Klopotov A.A.Tomsk State University of Architecture and Buildingklopotovaa@tsuab.ru
Всего: 4

References

Dudin A.N., Neshchimenko V.V., and Yurina V.Y. // J. Surf. Investigat. - 2020. - V. 14. - No. 4. - P. 823-829.
Mikhailov M.M., Yuryev S.A., Neshchimenko V.V., and Sokolovskiy A.N. // Rad. Phys. Chem. - 2020. - V. 170. - P. 108661.
An Z. and Zhang J. // J. Mater. Chem. C. - 2016. - V. 4. - No. 34. - P. 7979-7988.
Власов В.А., Шеховцов В.В., Волокитин О.Г. и др. // Изв. вузов. Физика. - 2018. - Т. 61. - № 4. - С. 92-98.
Wang M. and Pan N. // Mater. Sci. Eng. R. - 2008. - V. 63. - P. 1-30.
Sarfarazi V. and Haeri H. // Struct. Eng. Mech. - 2018. - V. 68. - No. 5. - P. 537-547.
Han Y., Fuji M., Shchukin D., et al. // Cryst. Growth and Design. - 2009. - V. 9. - No. 8. - P. 3771- 3775.
Жуков А.С., Архипов В.А., Бондарчук С.С., Гольдин В.Д. // Химическая физика. - 2013. - Т. 32. - № 12. - С. 52-58.
Shekhovtsov V.V. et al. // Glass and Ceram. - 2018. - V. 75. - No. 1-2. - P. 32-35.
Gulyaev I. // Surf. Coat. Technol. - 2020. - V. 404. - P. 126454.
Gulyaev I.P. and Solonenko O.P. // Exp. Fluids. - 2013. - V. 54. - No. 1. - P. 1432.
Wu J.-M. et al. // Ceram. Int. - 2020. - V. 46. - No. 17. - P. 26888-26894.
Солоненко О.П. // Теплофизика и аэромеханика. -2014. - Т. 21. - № 6. - С. 767-778.
Каменецких А.С., Гаврилов Н.В., Третников П.В. и др. // Изв. вузов. Физика. - 2020. - Т. 63. - № 10. - C. 144-150.
Гольдварг Т.Б., Шаповалов В.Н. // Изв. вузов. Физика. - 2020. - Т. 63. - № 9. - C. 33-37.
Баранникова С.А., Ли Ю.В. // Изв. вузов. Физика. - 2020. - Т. 63. - № 5. - C. 19-24.
Mathur P. and Mishra S.R. // Pramana - J. Phys. - 2020. - V. 94. - No. 1. - P. 69.
Celli M. and Barletta A. // Int. J. Heat and Mass Transfer. - 2020. - V. 162. - P. 120366.
Rajabi M.M. et al. // Int. J. Heat and Mass Transfer. -2020. - V. 162. - P. 120291.
Kedzierski M.A., Brignoli R., Quine K.T., and Brown J.S. // Int. J. Refrigeration. - 2017. - V. 74. - P. 1-9.
Alexiades V., Hannous N., and Mai T.Z. // Electronic J. Differ. Equat. - 2003. - V. 10. - P. 55-69.
Arkhipov V.A., Bondarchuk S.S., Shekhovtsov V.V., et al. // Thermophys. Aeromech. - 2019. - V. 26. - No. 1. - P. 139-152.
Lu X., Blawert C., Zheludkevich M.L., and Kainer K.U. // Corrosion Sci. - 2015. - V. 101. - P. 201-207.
Fatyeyeva K. and Poncin-Epaillard F. // Plasma Chem. Plasma Processing. - 2011. - V. 31. - No. 3. - P. 449-464.
Искендеров Э.Г. Дворянчиков В.И., Дибиров Я.А. // Изв. вузов. Физика. - 2020. - Т. 63. - № 9. - C. 112-118.
Huang R., Lan L., and Li Q. // Phys. Rev. E. - 2020. - V. 102. - No. 4. - P. 043304.
Fedotova M.A. and Petrosyan A.S. // J. Exp. Theor. Phys. - 2020. - V. 131. - No. 2. - P. 337-355.
Allendes A., Naranjo C., and Otárola E. // Comput. Methods Appl. Mech. Eng. - 2020. - V. 361. - P. 112703.
Jiang F., Matsumura K., Ohgi J., and Chen X. // Comput. Phys. Commun. - 2021. - V. 259. - P. 107661
Shu Y., Li J., and Zhang C. // Appl. Math. Comput. - 2020. - V. 387. - P. 124671.
 Thermal convection in melting zone of hollow microparticle Al<sub>2</sub>O<sub>3</sub> | Izvestiya vuzov. Fizika. 2021. № 5. DOI: 10.17223/00213411/64/5/20

Thermal convection in melting zone of hollow microparticle Al2O3 | Izvestiya vuzov. Fizika. 2021. № 5. DOI: 10.17223/00213411/64/5/20