Influence of shape of impactormade from high-strength steel on its fracture at high deformation rates
The fracture of high-strength impactor in interaction with a steel barrier is investigated. Three typesof head parts of the impactor are considered: flat, hemispherical and ogival. Normal and oblique interactions with velocities of 700 and 1000 m/s are investigated. Modeling is carried out by the finite element method in a three-dimensional formulation using the author's software EFES 2.0.The limit value of intensity of plastic deformations is used as a fracture criterion. The influence of the striker head part shape, interaction velocity, interaction angle on the fracture of the impactor and the barrier has been investigated. Conditions under which the striker ricochets were defined.
Keywords
impactor,
barrier,
fracture,
model,
deformation,
shock wave,
ricochetAuthors
Radchenko P.A. | Institute of Strength Physics and Materials Science of SB RAS | pavel@ispms.tsc.ru |
Batuev S.P. | Institute of Strength Physics and Materials Science of SB RAS | batuev@ispms.tsc.ru |
Radchenko A.V. | Institute of Strength Physics and Materials Science of SB RAS | andrey@ispms.tsc.ru |
Всего: 3
References
Schonberg W.P. and Taylor R.A. // AIAA J. - 1989. - V. 27. - No. 5. -P. 639-646.
Johnson W., Sengupta A.K., and Ghosh S.K. // Int. J. Mech. Sci. - 1982. - V. 24. - No. 7. - P. 425-436.
Gupta N.K. and Madhu V. // Int. J. Impact Eng. - 1997. - V. 19. - No. 5-6. - P. 395-414.
Zukas J.A. and Gaskill B. // Int. J. Impact Eng. - 1996. - V. 18. - No. 6. - P. 601-610.
Kapahi A., Sambasivan S., and Udaykumar H.S. // J. Comput. Phys. - 2013. - V. 241. - P. 308- 332.
Gupta N.K. and Madhu V. // Int. J. Impact Eng. - 1992. - V. 12. - No. 3. - P. 333-343.
Nishshanka B., Shepherd Ch., and Paranirubasingam P. // Forensic Sci. Int. -2020. - V. 312. - P. 110313.
Manes A., Serpellini F., Pagani M., et al. // Int. J. Impact Eng. - 2014. - V. 69. - P. 39-54.
Schonberg W.P. and Ebrahim A.R. // Int. J. Impact Eng. - 1999. - V. 23. - P. 823-834.
Zhai Y.X., Wu H., and Fang Q. // Defence Technol. -2020. - V. 16. - P. 50-68.
Герасимов А.В. // Известия ТПУ. Инжиниринг георесурсов. - 2015. - Т. 326. - № 1. - С. 139-145.
Ищенко А.Н., Акиншин Р.Н., Афанасьева С.А. и др. // Изв. вузов. Физика. - 2018. - Т. 61. - № 6. - С. 49-55.
Краус Е.И., Фомин В.М., Шабалин И.И. // ПМТФ. - 2020. - Т. 61. - № 5 (363). - С. 199-210.
Краус А.Е., Краус Е.И., Шабалин И.И. // ПМТФ. - 2020. - Т. 61. - № 5 (363). - С. 190-198.
Romanova V., Balokhonov R., Batukhtina E., et al. // Phys. Mesomech. - 2019. - V. 22. - No. 4. - P. 296-306.
Balokhonov R.R., Evtushenko E.P., Romanova V.A., et al. // Phys. Mesomech. - 2020. - V. 23. - No. 2. - P. 135-146.
Radchenko P.A., Batuev S.P., and Radchenko A.V. // Phys. Mesomech. - 2021. - V. 24. - No. 1. - P. 40-45.
Радченко П.А., Батуев С.П., Радченко А.В. Трехмерное моделирование деформации и разрушения гетерогенных материалов и конструкций при динамических нагрузках (EFES 2.0) // Федеральная служба по интеллектуальной собственности. Государственная регистрация программы для ЭВМ. - № 2019664836 от 14.11.2019.
Radchenko P.A., Radchenko A.V., Batuev S.P., et al. // J. Phys.: Conf. Ser. - 2016. - V. 774. - P. 012064.