Nickel titanium fatigue properties improvement using a low-energy high-current electron beam | Izvestiya vuzov. Fizika. 2021. № 5. DOI: 10.17223/00213411/64/5/79

Nickel titanium fatigue properties improvement using a low-energy high-current electron beam

It is shown that it is possible to an almost double increase nickel titanium fatigue characteristics using a low-energy high-current electron beam surface treatment of microsecond duration with the following parameters - energy density E s = 1.5 and 3.7 J/cm2, the number of pulses n = 5. Due to surface cleaning from particles/inclusions of Ti2Ni, TiC(O) and the presence of residual compressive stresses in the rapidly quenched surface layer of TiNi oriented perpendicular to the irradiation surface.

Download file
Counter downloads: 50

Keywords

nickel titanium alloy, low-energy pulsed high-current electron beam, the surface layer structure, residual stresses, low cycle fatigue

Authors

NameOrganizationE-mail
Meisner S.N.Institute of Strength Physics and Materials Science of SB RASmsn@ispms.tsc.ru
Meisner L.L.Institute of Strength Physics and Materials Science of SB RASllm@ispms.tsc.ru
Neiman A.A.Institute of Strength Physics and Materials Science of SB RASnasa@ispms.ru
Panin S.V.Institute of Strength Physics and Materials Science of SB RASsvp@ispms.ru
Vlasov I.V.Institute of Strength Physics and Materials Science of SB RASgood0@yandex.ru
Всего: 5

References

Otsuka K. and Ren X. // Prog. Mater. Sci. - 2005. - V. 50. - P. 511-678.
Mohd Jani. J., Leary M., Subic A., and Gibson M.A. // Mater. Des. - 2014. - V. 56. - P. 1078- 1113.
Duerig T., Pelton A., and Stöckel D. // Mater. Sci. Eng. - 1999. - V. A273-275. - P. 149-160.
Raboud D.W., Faulkner M.G., and Lipsett A.W. // Smart Mater. Struct. - 2000. - V. 9. - P. 684- 692.
Bonnot E., Romero R., Mañosa L., et al. // Phys. Rev. Lett. - 2008. - V. 100. - P. 125901.
Bhattacharya K., Conti S., Zanzotto G., and Zimmer J. // Nature. - 2004. - V. 428. - P. 55- 59.
Moya X., Kar-Narayan S., and Mathur N.D. // Nature Mater. - 2014. - V. 13. - P. 439-450.
Shabalovskaya S.A. // Biomed. Mater. Eng. - 2002. - V. 12. - P. 69-109.
Morgan N.B. // Mater. Sci. Eng. A. - 2004. - V. 378. - P. 16-23.
Pelton A.R. // J. Mater. Eng. Perform. - 2011. - V. 20. - P. 613-617.
Eggeler G., Hornbogen E., Yawny A., et al. // Mater. Sci. Eng. A. - 2004. - V. 378. - P. 24-33.
Miyazaki S., Mizukoshi K., Ueki T., et al. // Mater. Sci. Eng. A. - 1999. - V. 273-275. - P. 658- 663.
Hornbogen E. // J. Mater. Sci. - 2004. - V. 39. - P. 385-399.
Gall K. and Maier H.J. // Acta Mater. - 2002. - V. 50. - P. 4643-4657.
Miyazaki S., Fu Y.Q., and Huang W.M. Thin Film Shape Memory Alloys. - Cambridge: Cambridge Univ. Press, 2009. - 460 p.
Bechtold C., Chluba C., Lima de Miranda R., and Quandt E. // Appl. Phys. Lett. - 2012. - V. 101. - P. 091903.
Siekmeyer G., Schüßler A., de Miranda R., and Quandt E. // J. Mater. Eng. Perform. - 2014. - V. 23. - P. 2437-2445.
Lima de MirandaR., Zamponi C., and Quandt E. // Adv. Eng. Mater. - 2013. - V. 15. - P. 66-69.
Rotshtein V., Ivanov Yu., and Markov A. // Materials Surface Processing by Directed Energy Techniques / ed. Y. Pauleau. - Amsterdam: Elsevier, 2006. - 745 p. (Chapter 6).
Qin Y., Zou J., Dong C., et al. // Nucl. Instrum. Methods. B. - 2004. - V. 225. - P. 544-554.
Meisner L.L., Semin V.O., Mironov, et al. // Mater. Today Commun. - 2018. - V. 17. - P. 169-179.
Meisner L.L., Markov A.B., Rotshtein V.P., et al. //J. Alloys Comp. - 2018. - V. 730. - P. 376- 385.
Озур Г.Е., Марков А.Б., Падей А.Г. // Патент на полезную модель. RU № 97005 U1 от 23.04.2010. МПК H01J 3/02.
Meisner, L.L., Markov A.B., Proskurovsky D.I., et al. // Surf. Coat. Technol. - 2016. - V. 302. - P. 495-506.
Coda A., Zilio S., Norwich D., and Sczerzenie F. // J. Mater. Eng. Perform. - 2012. - V. 21(12). - P. 2572-2577.
Meisner S.N., Yakovlev E.V., Semin V.O., et al. // Appl. Surf. Sci. - 2018. - V. 437. - P. 217- 226.
Gałdecka E. International Tables for Crystallography. - 2006. - V. C(5.3). - P. 505-536.
Birkholz M. Thin Film Analysis by X-ray Scattering. - Weinheim: Willey-VCH Verlag GmbH&Co. KGaA, 2006. -356 p.
Härting M., Nsengiyumva S., Rajia A.T., et al. // Surf. Coat. Technol. - 2007. - V. 201(19-20). - P. 8237-8241.
Ma C.-H., Huang J.-H., and Haydn Chen // Thin Solid Films. - 2002. - V. 418(2). - P. 73-78.
Oliver W.C. and Pharr G.M. // J. Mater. Res. - 2004. - V. 19(01). - P. 3-20.
Valiev R.Z., Islamgaliev R.K., Alexandrov I.V., et al. // Prog. Mater. Sci. - 2000. - V. 45(2). - P. 103-189.
Мейснер С.Н., Дьяченко Ф.А., Яковлев Е.В., Мейснер Л.Л. // Изв. вузов. Физика. - 2016. - Т. 59. - № 7/2. - С. 159-163.
 Nickel titanium fatigue properties improvement using a low-energy high-current electron beam | Izvestiya vuzov. Fizika. 2021. № 5. DOI: 10.17223/00213411/64/5/79

Nickel titanium fatigue properties improvement using a low-energy high-current electron beam | Izvestiya vuzov. Fizika. 2021. № 5. DOI: 10.17223/00213411/64/5/79