A comprehensively improved particle swarm optimization algotithm to guarantee particle activity | Izvestiya vuzov. Fizika. 2021. № 5. DOI: 10.17223/00213411/64/5/94

A comprehensively improved particle swarm optimization algotithm to guarantee particle activity

The particle swarm optimization algorithm has the disadvantages, for instance, the convergence viscosity of the algorithm is reduced at the post evolution phase, the optimization search efficiency is reduced, the algorithm is easy to be inserted with local extremum during the calculation of complex problem of high-dimensional multiple extremum, and the convergence thereof is low. As to the disadvantage of the PSO, we proposed a particle swarm optimization of comprehensive improvement strategy, which is a simple particle swarm optimization with dynamic adaptive hybridization of extremum disturbance and cross (ecds-PSO algorithm). This new comprehensive improved particle swarm algorithm discards the particle velocity and reduces the PSO from the second order to the first order difference equation. The evolutionary process is only controlled by the variables of the particles position. The hybridization operation of increasing the extremum disturbance and introducing genetic algorithm can accelerate the particles to overstep the local extremum. The mathematical derivation and a plurality of comparative experiment provide us the following information: the improved particle swarm optimization is a simple and effective optimization algorithm which can improve the algorithm accuracy, convergence viscosity and ability of avoiding the local extremum, and effectively reduce the calculation complexity.

Download file
Counter downloads: 52

Keywords

the particle swarm optimization algorithm, dynamic adaptive, local extremum, activity of particles

Authors

NameOrganizationE-mail
Ya Bi School of Business Administration, Hubei University of Economics; College of Public Administration, Huazhong University of Science & Technologybiya@hbue.edu.cn
Anthony Lam Faculty of Economics and Business, KU Leuven21259537@qq.com
Huiqun Quan School of Business Administration, Hubei University of Economicsoh2020987456@163.com
Hui Liu School of Business Administration, Hubei University of Economicsliuhui@hbue.edu.cn
Cunfa Wang School of Management, Wuhan University of Technology; Fujian Zhuozhi Project Investment Consulting Co., LTD912832894@qq.com
Всего: 5

References

Wang D.F. and Feng L. // Acta Automat. Sinica. - 2016. - V. 42. - No. 10. - P. 1552-1561.
Kennedy J. and Eberhart R. // Proc. ICNN’95 Int. Conf. on Neural Networks. - Perth, Australia, 1995. - P. 1942-1948.
Shi Y. and Eberhart R. // IEEE Int. Conf. on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence. - Anchorage, USA, 1998. - P. 69-73.
Clerc M. // Proc. the Congress on Evolutionary Computation-CEC99. - Washington, USA, 1999. - P. 1951-1957.
Jiang F.L., Zhang Y., and Wang Y.G. // Appl. Res. Comput. - 2017. - V. 34. - No. 12. - P. 3599- 3602.
Li J., Wang C., Li B., and Fang G. // Appl. Res. Comput. - 2016. - V. 33. - No. 9. - P. 2584-2587, 2591.
Tan Y., Tan G.Z., and Deng S.Z. // Appl. Res. Comput. - 2016. - V. 33. - No. 8. - P. 6-12.
Cheng B.Y., Lu H.Y., Huang Y., and Xu K.B. // J. Comput. Appl. - 2017. - V. 37. - No. 3. - P. 750-754, 781.
Hu W. and Li Z.S. // J. Software. - 2007. - V. 18. - No. 4. - P. 861-868.
Ni Q.J., Zhang Z.Z., Wang Z.Z., and Xing H.C. // J. Software. - 2009. - V. 20. - No. 2. - P. 339- 349.
Kennedy J. // Proc. Congress on Evolutionary Computation. - La Jolla, USA, 2000. - P. 1507-1512.
Li W.F., Liang X.L., and Zhang Y. // Acta Electron. Sinica. - 2012. - V. 40. - No. 11. - P. 2194- 2199.
Li C., Wang B.Y., and Gao H. // Comp. Technol. Development. - 2017. - V. 27. - No. 4. - P. 89-93.
Unler A. and Murat A. // Eur. J. Operation. Res. - 2010. - V. 206. - No. 3. - P. 528-539.
Li F., Liu J.C., Shi H.T., and Zi Y. // Control and Decision. - 2017. - V. 3. - No. 3. - P. 403-410.
Clerc M. and Kennedy J. // IEEE Tran. Evolution Comp. - 2002. - V. 6. - No. 1. - P. 58-73.
Esteban M., Núñez E.P., and Torres F. // Appl. Math. Nonlinear Sci. - 2017. - V. 2. - 449-464.
Ge S., Liu Z., Furuta Y., and Peng W. // Saudi J. Biol. Sci. - 2017. - V. 24. - P. 1370-1374.
Imam M.H., Tasadduq I.A., Ahmad A., and Aldosari F. // Eurasia J. Math. Sci. Technol. Education. - 2017. - V. 13. - P. 3069-3081.
Maddi B., Viamajala S., and Varanasi S. // ACS Sustainable Chem. Eng. - 2018. - V. 6. - P. 237- 247.
Bruzón M.S. and Garrido T.M. // Discrete and Continuous Dynam. Systems. - 2018. - V. 11. - P. 631-641.
Shen Y., Zhao N., Xia M., and Du X. // Polish Maritime Res. - 2017. - V. 24. - P. 102-109.
Sun X., Chen F., and Hewings G.J.D. // Emerging Markets Finance & Trade. - 2017. - V. 53. - No. 5. - P. 2063-2081.
Cai L., Chen J., Peng X., and Chen B. // Int. J. Technol. Management. - 2016. - V. 72. - No. 1-3. - P. 171-191.
 A comprehensively improved particle swarm optimization algotithm to guarantee particle activity | Izvestiya vuzov. Fizika. 2021. № 5. DOI: 10.17223/00213411/64/5/94

A comprehensively improved particle swarm optimization algotithm to guarantee particle activity | Izvestiya vuzov. Fizika. 2021. № 5. DOI: 10.17223/00213411/64/5/94