Adaptive fault-tolerant control algorithm for inverter torque ripple | Izvestiya vuzov. Fizika. 2021. № 5. DOI: 10.17223/00213411/64/5/102

Adaptive fault-tolerant control algorithm for inverter torque ripple

Aiming at the shortcomings of traditional PCB control algorithm and reduce control algorithm, such as poor fault tolerance and uncontrollable change of adaptive parameters, an adaptive fault-tolerant control algorithm based on inverter torque ripple is designed. Control the voltage space change, master the specific output waveform of torque ripple, get the optimal PWM suppression factor by calculating the peak and valley floating trend, and determine the suppression effect of inverter torque ripple. On this basis, Lyapunov stability theory is introduced to determine the application range of adaptive reference system. By calculating the fault-tolerant factor of the interval, the basic control flow is improved, and the adaptive fault-tolerant control algorithm based on the torque ripple of the inverter is realized. The experimental results show that the fault-tolerant ability of the control algorithm is improved by about 20% when the adaptive parameters are always in the controllable range.

Download file
Counter downloads: 46

Keywords

inverter, torque ripple, vector modulation, output waveform, inhibitory factor, adaptive reference system, a fault-tolerance factor

Authors

NameOrganizationE-mail
Xiushan Liu College of Electronics and Information, Guangdong Polytechnic Normal Universitylxsdz@163.com
Qin Zhang College of Electronics and Information, Guangdong Polytechnic Normal Universityivy_1118@163.com
Jun Cheng College of Electronics and Information, Guangdong Polytechnic Normal Universitymrchengjunjun@foxmail.com
Всего: 3

References

Ben Mariem H. and Chaieb M. // Appl. Ecol. Environ. Res. - 2017. - V. 15. - No. 3. - P. 67-82.
Davarnejad R., Moraveji M.K., and M. Havaie // Arab. J. Chem. - 2018. - V. 11. - No. 3. - P. 370-379.
Feher L.C., Willis J.M., and Hester M.W. // J. Coastal Res. - 2018. - V. 34. - No. 1. - P. 58-66.
Jeon E., Ryu S., Park S., et al. // J. Clean. Prod. - 2018. - V. 176. - P. 54-62.
Kniat A. // Pol. Mar. Res. - 2017. - V. 24. - No. 4. - P. 42-46.
Xu G.Y., Wang Z., and Wang Z.Q. // Electron. Design Eng. - 2017. - V. 25. - No. 21. - P. 100-103.
Zhu X.Y., Zhu F., Zhang C., et al. // Chin. J. Elect. Eng. - 2016. - V. 36. - No. 17. - P. 4712-4718.
Sun H.X., Zhang H.S., and Jing Y.W. // J. Motor Cont. - 2016. - V. 20. - No. 11. - P. 107-116.
Xie X.L., Jiang B., and Liu J.W. // J. Shandong University: Eng. Ed. - 2017. - V. 47. - No. 5. - P. 210- 214.
Ahamed M.S., Guo H., and Tanino K. // Inf. Process. Agric. - 2018. - V. 5. - No. 1. - P. 33-46.
Gao W., Baig A.Q., Ali H., et al. // Saudi J. Biol. Sci. - 2017. - V. 24. - No. 1. - P. 132-138.
Ge S., Liu Z., Li R., et al. // Saudi J. Biol. Sci. - 2017. - V. 24. - No. 1. - P. 127-131.
Iqbal A., Iqbal Y., Khan A.M., and Ahmed S. // J. Saudi Chem. Soc. - 2018. - V. 22. - No. 4. - P. 449-458.
Khaleel C., Tabanca N., and Buchbauer G. // Open Chem. - 2018. - V. 16. - No. 1. - P. 349-361.
Tao H F., Zou W., and Yang H.Z. // Contr. Theor. Appl. - 2016. - V. 33. - No. 3. - P. 329-335.
Li H.M., Yao H.Y., and Wang P. // Trans. Ch. Electrotech. Soc. - 2016. - V. 31. - No. 2. - P. 228-235.
Zhang H.W., Wang X.H., and Jing P.H. // J. Electron. Meas. Instrum. - 2017. - V. 22. - No. 11. - P. 1745-1752.
Wang J., Li S.Z., and Li W. // J. Lanzhou University of Tech. - 2016. - V. 42. - No. 6. - P. 79-86.
Bai H.F., Zhu J.W., Qin J.F., et al. // Contr. Decis. - 2018. - V. 33. - No. 1. - P. 27-36.
Li W., Zhai P.F., and Li Y.J. // J. Syst. Simul. - 2017. - V. 29. - No. 4. - P. 740-751.
Wei S.R., Huang S.R., Fu Y., et al. // Power Autom. Equip. - 2016. - V. 36. - No. 10. - P. 100-107.
Wang G.D., Ying L.M., Chang Y., et al. // Power Grid Technol. - 2017. - V. 41. - No. 2. - P. 656- 662.
Xu X.P., Huang H., and Huang Z. // Space Contr. Technol. Appl. - 2017. - V. 43. - No. 1. - P. 36-41.
Wang Y.F., Tian J.C., Zhuo K.Q., et al. // Appl. Motor Cont. - 2016. - V. 43. - No. 8. - P. 63-67.
Liu Z.C., Wang D.W., Liu Y., et al. // J. Beijing Inst. Technol. - 2016. - V. 36. - No. 2. - P. 191-196.
Zhao T., Liang J.B., Xia T.X., et al. // High Voltage Technol. - 2016. - V. 42. - No. 7. - P. 2299- 2307.
Yang J.W., Xu B.G., Yang J.W., et al. // Comput. Appl. Res. - 2016. - V. 33. - No. 6. - P. 1834- 1838.
Xie B., Yang L.Q., and Chen Q. // Comput. Appl. - 2016. - V. 36. - No. 11. - P. 3033-3038.
Hu Y., Zhuang L., Lan J.L., et al. // J. Electron. Infor. - 2016. - V. 38. - No. 10. - P. 2660-2666.
Zhou K.L., Chen H., Sun H., et al. // J. Comput. Sci. - 2017. - V. 40. - No. 10. - P. 2404-2420.
Geng H.T., Chen Z., Chen Z.P., et al. // Control and Decis. - 2017. - V. 32. - No. 8. - P. 1386-1394.
Wen J.B., Sun Z.G., Wang Q., et al. // J. Nat. Sci. Heilongjiang University. - 2016. - V. 17. - No. 4. - P. 539-544.
Zhao L.F., Chen J.S., Chen W.W., et al. // Ch. Mech. Eng. - 2017. - V. 28. - No. 24. - P. 2906- 2913.
Yang B., Zhang G.M., Wang M.D., et al. // Appl. Motor and Cont. - 2016. - V. 43. - No. 10. - P. 46- 52.
Li M. Q., Yang M.Q., Ren X.Y., et al. // J. Pow. Syst. Automat. - 2017. - V. 29. - No. 1. - P. 52-57.
Costamagna A., Drigo M., Martini M., et al. // Appl. Math. Nonlinear Sci. - 2016. - V. 1. - No. 1. - P. 207-228.
Esteban M., Núñez E.P., and Torres F. // Appl. Math. Nonlinear Sci. - 2017. - V. 2. - No. 2. - P. 449-464.
 Adaptive fault-tolerant control algorithm for inverter torque ripple | Izvestiya vuzov. Fizika. 2021. № 5. DOI: 10.17223/00213411/64/5/102

Adaptive fault-tolerant control algorithm for inverter torque ripple | Izvestiya vuzov. Fizika. 2021. № 5. DOI: 10.17223/00213411/64/5/102