Strong and weak convergence theorems for general mixed equilibrium problems and general variational inequality problems and fixed point problems for two nonexpansive semigroups in Hilbert spaces | Izvestiya vuzov. Fizika. 2021. № 5. DOI: 10.17223/00213411/64/5/152

Strong and weak convergence theorems for general mixed equilibrium problems and general variational inequality problems and fixed point problems for two nonexpansive semigroups in Hilbert spaces

In this paper, we introduce some iterative algorithms for finding a common element of the set of solutions of the general mixed equilibrium problem and the set of solutions of a general variational inequality for two cocoercive mappings and the set of common fixed points of two nonexpansive semigroups in Hilbert space. We obtain both strong and weak convergence theorems for the sequences generated by these iterative processes in Hilbert spaces. Our results improve and extend the results announced by many others.

Download file
Counter downloads: 39

Keywords

iterative methods, general mixed equilibrium problem, general variational inequality, fixed point, nonexpansive semigroup, Hilbert space

Authors

NameOrganizationE-mail
Baoshuai Zhang School of Economics and Management, Chongqing Normal Universitybaoshuai8128@163.com
Ying Tian School of Economics and Management, Chongqing Normal Universitytycq666@126.com
Всего: 2

References

Tada A. and Takahashi W. // J. Optim. Theory Appl. - 2007. - V. 133. - No. 3. - P. 359-370.
Ceng L.C. and Yao J.C. // J. Comput. Appl. Math. - 2008. - V. 214. - No. 1. - P. 186-201.
Peng J.W. and Yao J.C. // Taiwanese J. Math. - 2008. - V. 12. - No. 1. - P. 1401-1432.
Plubtieng S. and Punpaeng R. // Appl. Math. Comput. - 2008. - V. 197. - No. 2. - P. 548-558.
Takahashi S. and Takahashi W. // Nonlinear Anal. - 2008. - V. 69. - No. 3. - P. 1025-1033.
Yao Y., Liou Y.C., and Kang S.M. // Comput. Math. with Appl. - 2010. - V. 59. - No. 11. - P. 3472- 3480.
Ceng L.C. and Yao J.C. // Nonlinear Anal. - 2010. - V. 72. - No. 3. - P. 1922-1937.
Qin X., Chang S.S., and Cho Y.J. // Nonlinear Anal.: Real World Appl. - 2009. - V. 11. - No. 4. - P. 2963-2972.
Chang S.S., Lee H.W.J., and Chan C.K. // Nonlinear Anal. - 2009. - V. 70. - No. 9. - P. 3307-3319.
Qin X., Shang M., and Su Y. // Math. Comput. Modelling. - 2008. - V. 48. - No. 7. - P. 1033-1046.
Qin X., Cho Y.J., and Kang S.M. // J. Comput. Appl. Math. - 2009. - V. 225. - No. 6. - P. 20-30.
Peng J.W. and Yao J.C. // Comput. Math. Appl. - 2009. - V. 58. - No. 5. - P. 1287-1301.
Kumam P. // Nonlinear Anal.: Hybrid Systems. - 2008. - V. 2. - No. 4. - P. 1245-1255.
Jaiboon C., Chantarangsi W., and Kumamb P. // Nonlinear Anal.: Hybrid Systems. - 2010. - V. 4. - No. 1. - P. 199-215.
Jaiboon C., Kumam P., and Humphries U.W. // Bull. Malays. Math. Sci. Soc. - 2009. - V. 32. - No. 2. - P. 173-185.
Verma R.U. // Math. Sci. Res. Hot-Line. - 1999. - V. 3. - No. 8. - P. 65-68.
Kumam W. and Kumam P. // Nonlinear Anal.: Hybrid Systems. - 2009. - V. 3. - P. 640-656.
Thianwan S. // Nonlinear Anal.: Hybrid Systems. - 2009. - V. 3. - No. 4. - P. 605-614.
Kangtunyakarn A. and Suantai S. // Nonlinear Anal. - 2009. - V. 71. - No. 10. - P. 4448-4460.
Cai G. and Hu C.S. // Nonlinear Anal.: Hybrid Systems. - 2009. - V. 2. - No. 4. - P. 395-407.
He H. and Chen R. // Fixed Point Theory and Appl. - 2007. - V. 65. - No. 6. - P. 6342-6350.
Wattanawitoon K. and Kumam P. // Fixed Point Theory and Appl. - 2009. - V. 65. - No. 6. - P. 1247- 1259.
Al-Ghafri K.S. and Rezazadeh H. // Appl. Math. Nonlinear Sci. - 2019. - V. 4. - No. 2. - P. 289-304.
Modanli M. and Akgul A. // Appl. Math. Nonlinear Sci. - 2020. - V. 5. - No. 1. - P. 163-170.
Saejung S. // Fixed Point Theory and Appl. - 2008. - V. 132. - No. 1. - P. 214-221.
Browder F.E. // Arch. Ration. Mech. Anal. - 1967. - V. 24. - No. 1. - P. 82-89.
Eslamian M. and Abkar A. // Top. - 2014. - V. 22. - No. 2. - P. 554-570.
Eslamian M. // RACSAM. - 2013. - V. 107. - P. 299-307.
Latif A. and Eslamian M. // Abstract Appl. Anal. - 2013. - V. 2013. - No. 1. - P. 548-558.
Goebel K. and Kirk W.A. // Topics in Metric Fixed Point Theory. - Cambridge: Cambridge Univ. Press, 1990. - P. 135-136.
Opial Z. // Bull. Amer. Math. Soc. - 1967. - V. 73. - No. 4. - P. 561-597.
Takahashi W. and Toyoda M. // J. Optim. Theory Appl. - 2003. - V. 118. - No. 2. - P. 417-428.
Ceng L.C., Wang C., and Yao J.C. // Math. Methods Oper. Res. - 2008. - V. 67. - No. 3. - P. 375-390.
Cho Y.J., Zhou H., and Guo G. // Comput. Math. Appl. - 2004. - V. 47. - No. 4. - P. 707-717.
Kumam P. // J. Appl. Math. Comput. - 2009. - V. 29. - No. 7. - P. 263-280.
 Strong and weak convergence theorems for general mixed equilibrium problems and general variational inequality problems and fixed point problems for two nonexpansive semigroups in Hilbert spaces | Izvestiya vuzov. Fizika. 2021. № 5. DOI: 10.17223/00213411/64/5/152

Strong and weak convergence theorems for general mixed equilibrium problems and general variational inequality problems and fixed point problems for two nonexpansive semigroups in Hilbert spaces | Izvestiya vuzov. Fizika. 2021. № 5. DOI: 10.17223/00213411/64/5/152