Relation of anomalous magnetic moment of electron with proton and neutron
The anomalous magnetic moment of the electron is calculated through introducing the effective mass of the virtual part of the electron structure. In this case, the anomalous moment is inversely proportional to the effective mass M eff which is shown to be a linear combination of the neutron, proton and electrostatic electron field masses. The spin of a rotating structure is assumed to be equal to 3/2, while the spin of a “bare” electron is equal to unity, the resultant spin being 1/2. A simple analysis gives the coefficients √2/2 and exp(1) √2/2 for a linear combination of proton and electron masses, the approximation precision giving here nine significant digits after the decimal point. The summand proportional to α2 adds four more digits. Thus, the conception of the effective mass M eff leads to the formula for the total magnetic moment of the electron, which is accurate to fourteen digits. Association with the virtual beta-decay reaction and possible reasons for simplicity of the derived formula are discussed.
Keywords
The anomalous magnetic moment of electron,
Effective mass,
Proton and neutron masses,
Fourteen significant figures,
Comparison with Quantum ElectrodynamicsAuthors
Efimov S.P. | Bauman Moscow State Technical University | serg.efimo2012@yandex.ru |
Всего: 1
References
Barrow J.D. The Constants of Nature, The Numbers that Encode the Deepest Secrets of Universe. - Random House, 2010. -368 p.
Koide Y. // Phys. Rev. D. - 1983. - V. 28. - No. 1. - P. 252; http://doi:10.1103/PhysRev D.28.252.
Zenczykowski P. Elementary Particles and Emergent Phase Space. - Singapore: World Scientific, 2014. - P. 64- 66.
Bohm Arno and Loewe M. Quantum Mechanics: Foundations and Applications. - 3rd ed. - N.Y.: Springer Verlag, 1993.
Aoyama Tatsumi, Hayakawa Massashi, Kinoshita Tochiro, and Nio Makito // Phys. Rev. D. - 2015. - V. 91. - No. 3. - P. 033006; http://Doi:10.1103/PhysRevD.91.033006; arXiv:1412.8284[hep-ph].
2018 CODATA, http:// www.physics.nist.gov/cuu/constants
Ефимов С.П. // Изв. вузов. Физика. - 2013. - Т. 56. - № 7. - С. 15.
Berestetskii V.B., Pitaevskii L.P., and Lifshitz E.M. Quantum Electrodynamics. - Elsevier, 2012. - 571 p.
Feynman R.P. The Theory of Fundamental Processes. - Perseus, Advanced Books Classics, 1998. - P. 53, 88, 147, fig. 29-4.
Glauber R.J. // Phys. Rev. - 1963. - V. 131. - No. 6. - P. 2766; http://link.aps.org>doi>PhysRev.131.2766; https://doi.org/10.1103/PhysRev.131.2766.
Ефимов С.П. // Изв. вузов. Физика. - 1976. - Т. 19. - № 3. - С. 95.
Weise W. and Green A.M. World Scientific. - 1984. - 65 p.
Schwinger J. // J. Math. Phys. - 1964. - V. 5. - No. 11. - P. 1606; https://doi.org/10.1063/1.1931195; http://jmp.aip.org/resource/1/jmapoq/v5/i11/p.1606.
Ефимов С.П. // УФН. - 2021. - Т. 191; http://Doi:10.3367/UFNr.2021.04.038966.