Dielectric properties of diisopropylammonium chloride embedded in porous glass
The results of studies of the dielectric constant ε΄ and the third harmonic coefficient γ3ω of a new organic ferroelectric diisopropylammonium chloride (C6H16NCl, DIPAC) embedded in porous glasses with an average pore size of 100 nm are presented. The studies were carried out in the temperature range of 340-455 K. For DIPAC, embedded in porous glass, the shift of the phase transition to low temperatures by 10 and 17 K during heating and cooling, respectively, compared to bulk DIPAC, was found.
Download file
Counter downloads: 32
Keywords
nanocomposite, diisopropylammonium chloride, dielectric constant, third harmonic coefficientAuthors
Name | Organization | |
Milinskiy A.Yu. | Blagoveshchensk State Pedagogical University | a.milinskiy@mail.ru |
Baryshnikov S.V. | Blagoveshchensk State Pedagogical University; Amur State University | svbar2003@list.ru |
Egorova I.V. | Blagoveshchensk State Pedagogical University | bgpu.chim.egorova@mail.ru |
References
Fu D.W., Zhang W., Cai H.L., et al. // Adv. Mater. - 2011. - V. 23. - No. 47. - P. 5658-5662.
Fu D.W., Cai H.L., Liu Y., et al. // Science. - 2013. - V. 339. - Iss. 6118. - P. 425-428.
Saripalli R.K., Diptikanta S., Prasad S., et al. // J. Appl. Phys. - 2017. - V. 121. - P. 114101-5.
Fu J., Hou Y., X. Liu, et al. // J. Mater. Chem. C. - 2020. - V. 8. - Iss. 26. - P. 8704-8731.
Милинский А.Ю., Барышников С.В., Чарная Е.В., Самойлович М.И. // Изв. вузов. Физика. - 2018. - Т. 61. - № 5. - С. 164-168.
Барышников С.В., Чарная Е.В., Милинский А.Ю. и др. // ФТТ. - 2009. - Т. 51. - № 6. - С. 1172-1176.
Барышников С.В., Чарная Е.В., Милинский А.Ю. и др. // ФТТ. - 2010. - Т. 52. - № 2. - С. 365-369.
Hu H., Zhang F., Luo S., et al. // J. Mater. Chem. A. - 2020. - V. 8. - Iss. 33. - P. 16814-16830.
Baryshnikov S.V., Charnaya E.V., Milinskiy A.Yu., et al. // Phase Transitions. - 2018. - V. 91. - Iss. 3. - P. 293-300.
Milinskiy A.Yu., Baryshnikov S.V., Charnaya E.V., et al. // J. Phys.: Cond. Matter. - 2019. - V. 31. - Iss. 48. - P. 485704.
Milinskiy A.Yu., Baryshnikov S.V., Charnaya E.V., et al. // Results Phys. - 2020. - V. 17. - P. 103069.
Uskova N.I., Charnaya E.V., Podorozhkin D.Yu., et al. // Appl. Magn. Res. - 2020. - V. 51. - Iss. 2. - P. 129-134.
Milinskii A.Yu., Baryshnikov S.V., Parfenov V.A., et al. // Trans. Electric. Electron. Mater. - 2018. - V. 19. - Iss. 3. - P. 201-205.
Ikeda S., Kominami H., Koyama K., and Wada I. // J. Appl. Phys. - 1987. - V. 62. - Iss. 8. - P. 3339-3342.
Yudin S.G., Blinov L.M., Petukhova N.N., and Palto S.P. // J. Exp. Theor. Phys. Lett. - 1999. - V. 70. - Iss. 9. - P. 633-640.
Wagner K.W. Die Isolierstoffe der Elektrotechnik. - Berlin: Springer, 1924.
Zhong W.L., Wang Y.G., Zhang P.L., and Qu B.D. // Phys. Rev. B. - 1994. - V. 50. - Iss. 2. - P. 698-703.
Wang C.L., Xin Y., Wang X.S., and Zhong W.L. // Phys. Rev. B. - 2000. - V. 62. - Iss. 17. - P. 11423.
Uskov A.V., Charnaya E.V., Pirozerskii A.L., and Bugaev A.S. // Ferroelectrics. - 2015. - V. 482. - Iss. 1. - P. 70-81.
Барышников С.В., Чарная Е.В., Стукова Е.В. и др. // ФТТ. - 2010. - Т. 52. - № 7. - С. 1347-1350.
