Electrical resistance of Fe-Mn alloys in the liquid state
The electrical resistivity of Fe-Mn alloys with a manganese content of 3.9, 6.0, 8.2, 10.3 and 13.2 at. % Mn was measured in the liquid state by the rotating magnetic field method. The experiments were performed in the heating mode from 1720 to 2070 K and then cooling the sample in an atmosphere of purified helium. For most of the studied alloys, a break in the temperature dependence of the electrical resistance was found when heated to 1900-2000 K. It is established that with the growth of the manganese content in the alloy r and d r/ dT increase. A theoretical calculation of the effective resistivity of the Fe - 10 at. % Mn alloy in the liquid state at temperatures from 1720 to 2770 K is performed. The values of the temperature T *, at which the conductivity of a heterogeneous system becomes equal to the conductivity of an iron solution in manganese with a uniform distribution of atoms, are established. Calculated values of T *= 2050-2100 K are obtained above the temperatures of 1900-2000 K, when heated to which a break in the temperature dependence of the electrical resistance is recorded. The possibility of a percolation transition in heterogeneous Fe-Mn melts is theoretically studied: the limit value of the ratio of the electrical resistivity of the medium and the inclusion at which a percolation transition is possible is established. The flow threshold was defined as the percentage of inclusions at which there is a significant decrease in the effective electrical resistance. The effective electrical resistivity of a heterogeneous melt is calculated using the Maxwell approximation (interpretation by A.A. Snarsky).
Keywords
Fe-Mn melts,
electrical resistivity,
temperature coefficient of electrical resistivity,
rotating magnetic field method,
modeling of heterogeneous melt structure,
unit cell method,
structural transition,
percolation transitionAuthors
Chikova O.A. | Ural Federal University named after the first President of Russia B.N. Yeltsin; Ural State Pedagogical University | o.a.chikova@urfu.ru |
Sinitsin N.I. | Ural Federal University named after the first President of Russia B.N. Yeltsin | n.i.sinitsin@urfu.ru |
V’yukhin V.V. | Ural Federal University named after the first President of Russia B.N. Yeltsin | v.v.vyukhin@urfu.ru |
Всего: 3
References
Власов В.И., Комолова Е.Ф. Литая высокомарганцовистая сталь Г13Л. Свойства и производство. - М.: Машгиз, 1963. - 195 с.
Idrissi H., Renard K., Ryelandtetal L., et al. // Acta. Mater. - 2010. - V. 58. - Iss. 7. - P. 2464.
So K.H., Kim J.S., Chun Y.S., et al. // ISIJ Int. - 2009. - V. 49. - Iss. 12. - P. 1952.
Гельд П.В., Любимцева Е.М., Митюшов Е.А. // Неорган. материалы. - 1995. - Т. 31. - № 8. - С. 1111-1114.
Вилсон Д.Р. Структура жидких металлов и сплавов. - М.: Металлургия, 1972. - 247 с.
Li M., Zhang Y., Wu C., et al. // Appl. Phys. A. - 2016. - V. 122. - Iss. 3. - P. 171.
Zu F.-Q. // Metals. - 2015. - V. 5. - Iss. 1. - P. 395.
Zhao X., Bian X., Wang C., and Li Y. // Chinese J. Phys. - 2018. - V. 56. - Iss. 6. - P. 2684.
Jia P., Geng H., Ding Y., et al. // J. Mol. Liq. - 2016. - V. 214. - P. 70.
Регель А.Р. // ЖФХ. - 1948. - Т. 18. - № 6. - C. 1511.
Воронков В.В., Иванова И.И., Туровский Б.М. // Магнитная гидродинамика. - 1973. - № 2. - С. 147.
Рябина A.B., Кононенко В.И., Ражабов A.A. // Расплавы. - 2009. - № 1. - С. 34.
Тягунов Г.В., Цепелев В.С., Баум Б.А. и др. // Зав. лаб. - 2003. - Т. 69. - № 2. - С. 36.
Кудрявцева Е.Д., Сингер В.В., Радовский И.З. и др. // Изв. вузов. Физика. - 1983. - T. 26. - № 1. - С. 55.
Вержболович С.А., Сингер В.В., Радовский И.З. и др. // Изв. вузов. Черная меатллургия. - 1985. - № 2. - С. 66.
Гайбулаев Ф., Регель А.Ф. // ЖФХ. - 1957. - Т. 27. - № 9. - С. 1996.
Белащенко Д.К. // ЖФХ. - 1957. - Т. 117. - № 1. - С. 98.
Nagel S.R. and Tauc J. // Phys. Rev. Lett. - 1975. - V. 35. - Iss. 6. - P. 380.
Faber T.E. and Ziman J.M. // The Philosophical Mag.: A J. Theor. Exp. Appl. Phys. - 1965. - V. 11. - Iss. 109. - P. 153.
Лякишев Н.П. Диаграммы состояния двойных металлических систем: справочник: в 3-х т. / под общей ред. Н.П. Лякишева. - М.: Машиностроение, 1997. - Т. 2. - 1024 c.
Дульнев Г.Н., Новиков В.В. Процессы переноса в неоднородных средах. - Л.: Энергоатомиздат, 1991. - 248 c.
Оделевский В.И. // ЖТФ. - 1951. - Т. 21. - Вып. 6. - С. 667.
Landauer R. // J. Appl. Phys. - 1952. - V. 23. - No. 7. - P. 779.
Zhao Q.-G., Liu S.-J., Guo H., et al. // Int. J. Heat Mass Transfer. - 2016. - V. 92. - P. 639.
Лепинских Б.М., Белоусов А.А., Бахвалов С.Г. и др. Транспортные свойства металлических и шлаковых расплавов: справ. изд. / под ред Н.А. Ватолина. - М.: Металлургия, 1995. - 649 c.
Guntherodt H.-J., Hauser E., Kunzi H.U., et al. // Phys. Lett. - 1975. - V. 54 A. - No. 4. - P. 29.
ShklovskIĭ B.I. and Éfros A.L. // Sov. Phys.-Usp. - 1975. - V. 18. - P. 845.
Snarskii A.A. // Phys.-Usp. - 2007. - V. 50. - P. 1239.
Snarskii A.A. and Zhenirovskyy M.I. // Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys. - 2008. - V. 78. - P. 021108.
Kirkpatrick S. // Rev. Mod. Phys. - 1973. - V. 45. - P. 574.