Electromagnetic properties of porous 3D carbon-based structures in high frequency range
Presents an analysis of electromagnetic response in microwave (26-37 GHz) and terahertz (0.1-1 THz) frequency ranges of bulk porous 3D structures based on carbon (carbon foams) obtained by chemical vapor deposition using Ni foam as a template. The structural features of the synthesized thin carbon films on the Ni framework analyzed by Raman spectroscopy and scanning microscopy. In particular, it was shown that, due to catalytic properties of Ni under certain synthesis conditions, thin carbon film represents sandwich structure consists of multilayer graphene and PyC. Analysis of the frequency dependences of reflectance ( R ) and transmittance ( T ) of carbon foams 1.6 mm thick with an average pore size of about 300-400 μm make it possible to conclude that such materials provide absorption at the level of 60% in the microwave range and 100% in THz. Using of thin films as a carbon skeleton in combination with flexible polymers allows us to expect that such materials will find further application as efficient flexible absorbers of high-frequency radiation.
Keywords
graphene,
thin carbon films,
carbon foams,
electromagnetic properties,
shielding and absorption materialsAuthors
Shashkova E.G. | Research Institution "Institute for Nuclear Problems", Belarusian State University | shashkova.eliz@gmail.com |
Valunets N.I. | Research Institution "Institute for Nuclear Problems", Belarusian State University | nadezhda.volynets@gmail.com |
Demidenko M.I. | Research Institution "Institute for Nuclear Problems", Belarusian State University | demidenko@inp.bsu.by |
Paddubskaya A.G. | Research Institution "Institute for Nuclear Problems", Belarusian State University | paddubskaya@gmail.com |
Всего: 4
References
Arnone D.D., Ciesla C.M., Corchia A., et al. // Proc. SPIE. - 1999. - V. 3828. - P. 209-219.
Siegel P.H. // IEEE Trans. Microwave Theor. Techn. - 2002. - V. 50 (3). - P. 910-928.
Nagatsuma T. // IEICE Electron. Express. - 2011. - V. 8 (14). - P. 1127-1142.
Beruete M. and Jáuregui-López I. //Adv. Opt. Mater. - 2020. - V. 8 (3). - P. 1900721.
Абдулкадиров M.A., Семенов А.П. // Фотоника. - 2015. - Т. 51. - С. 62-79.
Venkatachalam S., Bertin D., Ducournau G., et al. // Carbon. - 2016. - V. 100. - P. 158-164.
Xu S.T., Fan F., Cheng J., et al. // Adv. Opt. Mater. - 2019. - V. 7 (18). - P. 1900555.
Liu L., Das A., and Megaridis C.M. // Carbon. - 2014. - V. 69. - P. 1-16.
Кужир П.П., Letelier M., Быченок Д.С. и др. // Изв. вузов. Физика. - 2016. - Т. 59. - № 10. - C. 160-166.
Letellier M., Macutkevic J., Kuzhir P., et al. // Carbon. - 2017. - V. 122. - P. 217-227.
Letellier M., Macutkevic J., Bychanok D., et al. // J. Phys.: Conf. Ser. - Bristow, UK: IOP Publishing, 2017. - V. 879. - P. 012014.
Geim A.K. // Science. - 2009. - V. 324 (5934). - P. 1530-1534.
Geim A.K. and Novoselov K.S. // Nanosci.Tech. - 2009. - P. 11-19.
Novoselov K.S., Fal’ko V.I., Colombo L., et al. // Nature. - 2012. - V. 490 (7419). - P. 192- 200.
Batrakov K., Kuzhir P., Maksimenko S., et al. // Sci. Rep. - 2015. - V. 4. - P. 7191.
Batrakov K., Kuzhir P., Maksimenko S., et al. // Appl. Phys. Lett. - 2016. - V. 108 (12). - P. 123101.
McEvoy N., Peltekis N., Kumar S., et al. // Carbon. - 2012. - V. 50 (30). - P. 1216-1226.
Kaplas T. and Kuzhir P. // Nanoscale Res. Lett. - 2016. - V. 11 (1). - P. 1-6.
Chen Z., Xu Ch., Ma Ch., and Cheng H.-M. // Adv. Mater. - 2013. - V. 25 (9). - P. 1296-1300.
Zhou G., Li L., Ma Ch., et al. // Nano Energy. - 2015. - V. 11. - P. 356-365.
Sadezky A., Muckenhuber H., Grothe H., et al. // Carbon. - 2005. - V. 43 (8). - P. 1731-1742.
Graf D., Molitor F., Ensslin K., et al. // Nano Lett. - 2007. - V. 7 (2). - P. 238-242.
Yoon D., Moon H., Cheong H., et al. // J. Korean Phys. Soc. - 2009. - V. 55 (3). - P. 1299-1303.
Ferrari A.C. // Solid State Commun. - 2007. - V. 143 (1-2). - P. 47-57.
Hao Y., Wang Y., Wang L., et al. // Small. - 2010. - V. 6 (2). - P. 195-200.
Wang Y.Y., Ni Z.H., Shen Z.X., et al. // Appl. Phys. Lett. - 2008. - V. 92 (4). - P. 043121.
Paddubskaya A., Demidenko M., Batrakov K., et al. // Materials. - 2019. - V. 12 (1). - P. 143.
Kuzhir P.P., Paddubskaya A.G., Volynets N.I., et al. // J. Nanophotonics. - 2017. - V. 11 (3). - P. 032504.