Deformation features of sliding surface of construction steel under sliding current collection
A dry sliding of a model sample of general application construction steel against quenched steel under electric current of a density higher 250 A/cm2 was carried out according to the "pin-on-ring" interfacing scheme, where the sample was presented as "pin". It has been found that such a contact exhibits quite satisfactory wear resistance and electrical conductivity. Using a confocal laser microscope, a morphological feature of the sample sliding surface was found, consisting in the formation of two sectors. The sector of the sliding surface directed towards the movement of the counterbody (frontal sector) was deformed and deteriorated due to the plowing mechanism. X-ray phase analysis revealed the formation of FeO and FCC-iron in the surface layer of the sample.
Keywords
tribosystem,
self-organization,
structure,
phase composition,
surface layer,
electrical contactAuthors
Aleutdinova M.I. | Institute of Strength Physics and Materials Science SB RAS | aleut@ispms.ru |
Fadin V.V. | Institute of Strength Physics and Materials Science SB RAS | fvv@ispms.ru |
Всего: 2
References
Kragelsky I.V., Dobychin M.N., and Kombalov V.S. Friction and Wear Calculation Methods. - N.Y.: Pergamon Press, 1982. - 464 p.
Bowden F.P. and Tabor D. Friction: An Introduction to Tribology. - N.Y.: Anchor Press, 1973. - 178 p.
Hua N., Zhang Xi., Liao Zh., et al.// J. Non-Crystalline Solids. - 2020. - V. 543. - P. 120065. https://doi.org/10.1016/j.jnoncrysol.2020.120065.
Wang J. and Gao Y. // Wear. - 2019. - V. 436-437. - P. 203012.
Yin F., Mao Hu., Hua L., and Gu Zh.// Comput. Mater Sci. - 2012. - V. 59. - P. 140-151.
Archard J.F. and Hirst W. // Proc. R. Soc. Ser. A. - 1956. - V. 236. - P. 397-410.
Archard J.F. // Proc. R. Soc. Ser. A. - 1957. - V. 243. - P. 190-205.
Frischmuth K. and Langemann D. // Math. Comput. Simulation. - 2011. - V. 81. - P. 2688-2701.
Wang Y., Song R., and Huang Li. // J. Mater. Res. Technol. - 2021. - V. 11. - P. 1665-1671.
Wang Sh., Cui Q., Zou J., and Zhang Zh. // Wear. - 2020. - V. 462-463. - P. 203492.
Jafarian H.R., Sabzi M., Mousavi Anijdan S.H., et al. // J. Mater. Res. Technol. - 2021. - V. 10. - P. 819-831.
Bregliozzi G., Di Schino A., Kenny J.M., and Haefke H. // Mater. Lett. - 2003. - V. 57. - P. 4505-4508.
Liu Xi., Shi Xi., Lu G., et al. // J. Alloys and Compounds. - 2019. - V. 777. - P. 271-284.
Jia S.G., Liu P., Ren F.Z., et al. // Mater. Sci. Eng. A. - 2005. - V. 398. - P. 262-267.
Goto H. and Amamoto Y. // Wear. - 2011. - V. 270. - P. 725-736.
Справочник по триботехнике. Т 1. Теоретические основы / под общ. ред. М. Хебды, А.В. Чичинадзе. - М., 1989. - 464 с.
Aleutdinova M.I. and Fadin V.V. // AIP Conf. Proc. - 2019. - V. 2167. - P. 020012. https://doi.org/10.1063/1.5131879.
Fadin V.V., Aleutdinova M.I., and Pochivalov Yu.I. // AIP Conf. Proc. - 2018. - V. 2053. - P. 040022. https://doi.org/10.1063/1.5084460.
Zhang Y.S., Li W.L., Wang G., et al. // Mater. Lett. - 2012. - V. 68. - P. 432-434.
Li J.G., Umemot M., Todaka Y., and Tsuchiya K. // Mater. Sci. Eng. A. - 2006. - V. 435-436. - P. 383-388.
Wang S.Q., Wei M.X., and Zhao Y.T. // Wear. - 2010. - V. 269. - P. 424-434.
Cui X.H., Wang S.Q., Wang F., and Chen K.M. // Wear. - 2008. - V. 265. - P. 468-476.
So H., Yu D.S., and Chuang C.Y. // Wear. - 2002. - V. 253. - P. 1004-1015
Fadin V.V., Aleutdinova M.I., and Kolubaev A.V. // J. Friction and Wear. - 2018. - V. 39(4). - P. 294-298.
Фадин В.В., Алеутдинова М.И., Потекаев А.И., Куликова О.А. // Изв. вузов. Физика. - 2017. - Т. 60. - № 5. - С. 147-153.