Flow law and algorithm of straight grate teeth under the influence of geometric parameters of tooth shape
In view of the fact that the traditional method does not summarize the flow rules of the straight labyrinth seals, there is no rule to summarize the sealing effects of the labyrinth seals of different specifications. Therefore, it is proposed to study the flow law and algorithm of labyrinth seals under the influence of geometric parameters of tooth profile. According to geometric parameters of tooth profile, 22 kinds of tooth profile test models of straight tooth grating were designed. The experimental results show that the flow coefficient increases with the increase of seal clearance and tooth tip thickness. It is proportional to the tooth height, pitch and number of teeth. When compressed air passes through the labyrinth seals, more attention should be paid to the design of the first and last two teeth in the teeth group, so that the sealing effect will be better. It provides a favorable basis for studying the flow law of the labyrinth.
Keywords
straight-through labyrinth seals,
geometry parameters,
sensitivity grade,
discharge coefficientAuthors
Bo Zhang | Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power, Nanjing University of Aeronautics and Astronautics | zhangbo_pe@nuaa.edu.cn |
Jingjing Li | Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power, Nanjing University of Aeronautics and Astronautics | 15950500096@163.com |
Wenkai Li | Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power, Nanjing University of Aeronautics and Astronautics | hq229818631@163.com |
Honghu Ji | Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power, Nanjing University of Aeronautics and Astronautics | nuaa0096dyy@163.com |
Всего: 4
References
Zhu R.S., Lu Y.G., et al. // At. Energ. Sci. Tech. - 2016. - V. 50. - No. 7. - P. 1216-1223.
Qiao H.L., Yu J.Y., and Wang C. // J. China Acad. Electron. Inf. Tech. - 2016. - V. 11. - No. 6. - P. 574-576.
Soni A. and Singh S.N. // Sol. Energ. - 2017. - V. 148. - P. 149-156.
Melo T.D., Goulart J.N.V., Anflor C.T.M., et al. // Eur. J. Mech. B. Fluids. - 2017. - V. 62. - No. 3-4. - P. 130-138.
Ye H., Ge X.S., Zhuang S.Y., et al. // Acta Energ. Solaris Sin. - 2003. - V. 24. - No. 1. - P. 27-31.
Zhang B., Li J.J., Li W.K., et al. // J. Comput. Theor. Nano. Sci. - 2017. - V. 14. - No. 3. - P. 1528-1534.
Avanaki M.J. and Jeddi A.A.A. // J. Text. Inst. Proc. Abstr. - 2016. - V. 108. - No. 3. - P. 418-427.
Guo M.K., Wang Q.H., Yang J.Z., et al. // J. Yangtze Univ. Nat. Sci. Ed. - 2015. - V. 12. - No. 32. - P. 55-60.
Tong F., Zhang L., Hua R., et al. // J. Propul. Tech. - 2015. - V. 36. - No. 1. - P. 119-123.
Yang Z.H., Gong H.J., Li Y.J., et al. // China Sciencepaper. - 2016. - V. 11. - No. 5. - P. 527-532.
Cui L., Li G.Q., Han G., et al. // Gas Turb. Technol. - 2017. - V. 30. - No. 1. - P. 41-47.
Fu X., Cao Y.H., Zhang Y.B., et al. // Acta Armamentarii. - 2017. - V. 38. - No. 4. - P. 824-832.
Zhang B., Ji H.H., Du F.Q., et al. // J. Propul. Technol. - 2016. - V. 37. - No. 2. - P. 304-310.
Cui H.F., Liao S.N., and Gao Q.W. // Intern. Combust. Engines. - 2016. - V. 34. - No. 6. - P. 1-4.
Wang H.G. and Su C.J. // J. Netshape Forming Eng. - 2017. - V. 25. - No. 1. - P. 66-70.
Yang F., Zhu H.S., Jiao S.Q., et al. // West-China Explor. Eng. - 2016. - V. 28. - No. 5. - P. 47-49.
Teng L., Li Y.X., Liu M., et al. // Oil Gas Storage Transp. - 2016. - V. 35. - No. 11. - P. 1179-1186.
Lei Z., Kong X.Z., Liu G.W., et al. // J. Propul. Technol. - 2017. - V. 38. - No. 11. - P. 2588-2596.
Wang Z.K., Zeng Z.X., Xu Y.H., et al. // J. Propul. Technol. - 2015. - V. 36. - No. 3. - P. 405-412.
Wu F., Lu K.L., and Xiao Y. // Fire Sci. Technol. - 2015. - V. 34. - No. 7. - P. 863-865.
Gao W. and Wang W. // Colloq. Math. - 2017. - V. 147. - No. 1. - P. 55-65.
Kang L., Du H.L., Du X., et al. // Desalination and Water Treat. - 2018. - V. 44. - No. 25. - P. 296-301.
Li D., Wang L., Peng W., et al. // Polym. Compos. - 2017. - V. 38. - No. 9. - P. 2009-2015.
Simoes A.M. // J. Interdiscipl. Math. - 2018. - V. 21. - No. 3. - P. 645-667.
Styugin M.A., Kytmanov A.A., and Yamskikh T.N. // J. Discrete Math. Sci. Cryptogr. - 2018. - V. 21. - No. 3. - P. 679-694.
Gao W. and Wang W.F. // J. Differ. Equ. Appl. - 2017. - V. 23. - No. 1-2SI. - P. 100-109.
Gao W. and Wang W. // Colloq. Math. - 2017. - V. 149. - No. 2. - P. 291-298.
García-Planas M.I. and Klymchuk T. // Appl. Math. Nonlinear Sci. - 2018. - V. 3. - No. 1. - P. 97- 104.
Dusunceli F. // Appl. Math. Nonlinear Sci. - 2019. - V. 4. - No. 2. - P. 365-370.
Zhao W., Shi T., and Wang L. // Appl. Math. Nonlinear Sci. - 2020. - V. 5. - No. 1. - P. 71-84.
Harraga H. and Yebdri M. // Appl. Math. Nonlinear Sci. - 2018. - V. 3. - No. 1. - P. 127-150.
Nasir A.M., Husnine S.M., Ak T., et al. // Math. Meth. Appl. Sci. - 2018. - V. 41. - No. 16. - P. 6611-6624.
Morales-Delgado V.F., Gomez-Aguilar J.F., and Atangana A. // Therm. Sci. - 2019. - V. 23. - No. 2B. - P. 1279-1287.