Current distribution over the hollow-cathode surface for low-pressure glow discharge | Izvestiya vuzov. Fizika. 2021. № 7. DOI: 10.17223/00213411/64/7/3

Current distribution over the hollow-cathode surface for low-pressure glow discharge

The results of investigation of low-pressure glow discharge with the hollow cathode for the conditions when the cathode cavity depth is comparable with cavity diameter are presented. Data on current distribution over the hollow-cathode surface using sectioned electrodes are obtained and the length of the cathode sheath is measured. It is shown that for the regime of suppressed glow discharge the main fraction of the total discharge current closes to the nearest to the anode cathode section. For the regime of ordinary glow discharge, when the cavity depth is equal to cavity diameter, discharge current over the cathode surface is distributed uniformly. The estimations of the discharge parameters and the values of the cathode sheath using the model of hollow-cathode discharge sustainment were done. Model agrees well with the experimental data.

Download file
Counter downloads: 49

Keywords

glow discharge, hollow cathode discharge

Authors

NameOrganizationE-mail
Landl N.V.Institute of High Current Electronics SB RASlandl@lnp.hcei.tsc.ru
Korolev Y.D.Institute of High Current Electronics SB RASkorolev@lnp.hcei.tsc.ru
Frants O.B.Institute of High Current Electronics SB RASfrants@lnp.hcei.tsc.ru
Geyman V.G.Institute of High Current Electronics SB RASgeyman@lnp.hcei.tsc.ru
Argunov G.A.Institute of High Current Electronics SB RASargunov.grigory@yandex.ru
Nekhoroshev V.O.Institute of High Current Electronics SB RAScredence@vtomske.ru
Всего: 6

References

Korolev Y.D. and Koval N.N. // J. Phys. D: Appl. Phys. - 2018. - V. 51. - No. 32. - P. 323001.
Akishev Y.S., Karal’nik V.B., Petryakov A.V., et al. // Plasma Phys. Rep. - 2016. - V. 42. - No. 1. - P. 14.
Gavrilov N.V. and Kamenetskikh A.S. // Rev. Sci. Instrum. - 2004. - V. 75. - P. 1875.
Dewald E., Frank K., Hoffman D.H.H., et.al. // IEEE Trans. Plasma Sci. - 1997. - V. 25. - P. 272.
Bergmann K., Vieker J., and Wezyk A. // J. Appl. Phys. - 2016. - V. 120. - No. 14. - P. 143302.
Borisov V.M., Eltsov A.V., Ivanov A.S., et al.// J. Phys. D: Appl. Phys. - 2004. - V. 37. - P. 3254.
Иванов Ю.Ф., Лопатин И.В., Петрикова Е.А. и др. // Изв. вузов. Физика. - 2019. - T. 62. - № 11. - С. 137-142.
Lopatin I.V., Akhmadeev Y.H., and Koval N.N. // Rev. Sci. Instrum.- 2015. - V. 86. - Р. 103301.
Koval N.N., Ryabchikov A.I., Sivin D.O., et al. // Surf. Coat. Technol. - 2018. - V. 340. - P. 152.
Akhmadeev Y.H., Denisov V.V., Koval N.N., et al. // Plasma Phys. Rep. - 2017. - V. 43. - No. 1. - P. 67.
Девятков В.Н., Коваль Н.Н. // Изв. вузов. Физика. - 2017. - Т. 60. - № 9. - С. 44-48.
Lamba R.P., Pathania V., Meena B.L., et al. // Rev. Sci. Instrum. - 2015. - V. 86. - No. 10. - P. 103508.
Yan J.Q., Shen S.K., Wang Y.A., et al. // Rev. Sci. Instrum. - 2018. - V. 89. - No. 6. - P. 065102.
Korolev Y.D. and Frank K. // IEEE Trans. Plasma Sci. - 1999. - V. 27. - P. 1525.
Zhang J. and Liu X. // IEEE Trans. Dielectr. Electr. Insul. - 2017. - V. 24. - No. 4. - P. 2050-2055.
Korolev Y.D., Frants O.B., Landl N.V., et al. // IEEE Trans. Plasma Sci. - 2013. - V. 41. - No. 8. - P. 2087.
Korolev Y.D., Landl N.V., Geyman V.G., et al. // Plasma Phys. Rep. - 2016. - V. 42. - No. 8. - P. 799-807.
Ландль Н.В., Королев Ю.Д., Гейман В.Г. и др. // Изв. вузов. Физика. - 2017. - Т. 60. - № 8. - С. 5-12.
Королев Ю.Д., Ландль Н.В., Гейман В.Г. и др. // Изв. вузов. Физика. - 2019. - Т. 62. - № 7. - С. 162-171.
Kozyrev A.V., Korolev Y.D., Rabotkin V.G., and Shemyakin I.A. // J. Appl. Phys. - 1993. - V. 74. - No. 9. - P. 5366-5371.
Mehr T., Arentz H., Bickel P., et al. // IEEE Trans. Plasma Sci. - 1995. - V. 23. - P. 324-329.
Bochkov V.D., Dyagilev V.M., Ushich V.G., et al. // IEEE Trans. Plasma Sci. - 2001. - V. 29. - No. 5. - P. 802-808.
Korolev Y.D., Landl N.V., Geyman V.G., et al. // Plasma Phys. Rep. - 2018. - V. 44. - No. 1. - P. 110-117.
Ландль Н.В., Королев Ю.Д., Аргунов Г.А. и др. // Изв. вузов. Физика. - 2020. - Т. 63. - № 5. - С. 90-98.
Korolev Y.D., Landl N.V., Geyman V.G., et al. // IEEE Trans. Plasma Sci. - 2015. - V. 43. - No. 8. - P. 2349-2353.
Korolev Y.D., Landl N.V., Geyman V.G., et al. // Phys. Plasmas. - 2018. - V. 25. - No. 11. - P. 113510.
Korolev Y.D., Landl N.V., Geyman V.G., et al. // AIP Adv. - 2019. - V. 9. - No. 8. - P.085326.
Korolev Y.D., Landl N.V., Frants O.B., et al. // Phys. Plasmas. - 2020. - V. 27. - No. 7. - P. 073510.
Ландль Н.В., Королев Ю.Д., Гейман В.Г. и др. // Изв. вузов. Физика. - 2019. - Т. 62. - № 11. - С. 59-67.
Ландль Н.В., Королев Ю.Д., Гейман В.Г. и др. // Изв. вузов. Физика. - 2019. - Т. 62. - № 7. - С. 172-181.
 Current distribution over the hollow-cathode surface for low-pressure glow discharge | Izvestiya vuzov. Fizika. 2021. № 7. DOI: 10.17223/00213411/64/7/3

Current distribution over the hollow-cathode surface for low-pressure glow discharge | Izvestiya vuzov. Fizika. 2021. № 7. DOI: 10.17223/00213411/64/7/3