Formation of excess atomic volume and its role in the processes of fracture of nickel single crystal
Molecular dynamics simulation of crack propagation peculiarities in a nickel single crystal under uniaxial tension along the cubic direction was carried out. It was found that at room temperature regions with excess atomic volume are formed near the tips of the opening crack. Subsequently nanopores are formed in these areas which then merge with the crack stimulating high-speed opening. It is shown that if dislocations begin to form at the crack tip in a region with an increased atomic volume the crack propagation velocity in this direction significantly decreases.
Keywords
single crystal,
fracture,
nickel,
crack,
dislocation,
excess atomic volume,
uniaxial tension,
molecular dynamicsAuthors
Kryzhevich D.S. | Institute of Strength Physics and Materials Science of SB RAS | kryzhev@ispms.ru |
Korchuganov A.V. | Institute of Strength Physics and Materials Science of SB RAS | avkor@ispms.ru |
Zolnikov K.P. | Institute of Strength Physics and Materials Science of SB RAS | kost@ispms.ru |
Всего: 3
References
Pao C.W., Foils S.M., Webb E.B., et al. // Phys. Rev. B. - 2009. - V. 79. - P. 224113.
Hu S.Y., Ludwig M., Kizler P., et al. // Modell. Simul. Mater. Sci. Eng. - 1998. - V. 6. - P. 567-586.
Matsumoto R., Nakagaki M., Nakatani A., et al. // CMES-Comput. Modell. Eng. Sci. - 2005. -V. 9. - P. 75-84.
Li L., Shen L., and Proust G. // Mech Mater. - 2015. - V. 81. - P. 84-93.
Yang S., Ma G., Ren X., and Ren F. // Eng. Anal. Bound Elem. - 2014. - V. 43. - P. 37-49.
Özden U.A., Bezold A., and Broeckmann C. // Proc. Mater. Sci. - 2014. - V. 3. - P. 1518-1523.
Keyhani A., Goudarzi M., Mohammadi S., and Roumina R. // Comput. Mater. Sci. - 2015. - V. 104. - P. 98-107.
Petucci J., LeBlond C., and Karimi M. // Comput. Mater. Sci. - 2014. - V. 86. - P. 130-139.
Leung K.W.K., Pan Z.L., and Warner D.H. // Acta Mater. - 2014. - V. 77. - P. 324-334.
Zolnikov K.P., Korchuganov A.V., Kryzhevich D.S., et al. // Phys. Mesomech. - 2019. - V. 22. - P. 355-364.
Зольников К.П., Крыжевич Д.С., Корчуганов А.В. // Изв. вузов. Физика. - 2020. - Т. 63. - № 6. - C. 43-49.
Zhang J. and Ghosh S. // J. Mech Phys. Solid. - 2013. - V. 61. - P. 1670-1690.
Cui C.B. and Beom H.G. // Mater. Sci. Eng. A. - 2014. - V. 609. - P. 102-109.
Xu S. and Deng X. // Nanotechnology. - 2008. - V. 19. - P. 115705.
Zhang J. and Ghosh S. // J. Mech. Phys. Solid. - 2013. - V. 61. - P. 1670-1690.
Sung P.H. and Chen T.C. // Comput. Mater. Sci. - 2015. - V. 102. - P. 151-158.
Korchuganov A.V., Tyumentsev A.N., Zolnikov K.P., et al. // J. Mater. Sci. Technol. - 2019. - V. 35. - Iss. 1 - P. 201-206.
Psakhie S.G., Zolnikov K.P., Kryzhevich D.S., and Korchuganov A.V. // Sci. Rep. - 2019. - V. 9. - Art. 3867.
Zolnikov K.P., Kryzhevich D.S., and Korchuganov A.V. // Lett. Mater. - 2019. - V. 9. - Iss. 2. - P. 197-201.
Kryzhevich D.S., Zolnikov K.P., and Korchuganov A.V. // Comput. Mater. Sci. - 2018. - V. 153. - P. 445-448.
Zheng H., Cao A., Weinberger C., et al. // Nat. Commun. - 2010. - V. 1. - P. 144.
Sorkin V., Polturak E., and Adler J. // Phys. Rev. B. - 2003. - V. 68. - P. 174102.
Plimpton S. // J. Comput. Phys. - 1995. - V. 117. - P. 1-19.
Foiles S.M., Baskes M.I., and Daw M.S. // Phys. Rev. B. - 1986. - V. 33. - P. 7983.
Honeycutt J.D. and Andersen H.C. // J. Phys. Chem. - 1987. - V. 91. - P. 4950-4963.
Stukowski A. and Albe K. // Model. Simul. Mater. Sci. Eng. - 2010. - V. 18. - P. 085001.
Stukowski A. // Model. Simul. Mater. Sci. Eng. - 2010. - V. 18. - P. 015012.
Cleri F., Yip S., Wolf D., and Phillpot S.R. // Phys. Rev. Lett. - 1997. - V. 79. - P. 1309-1312.
Kimizuka H., Kaburaki H., Shimizu F., and Li J. // J. Comput.-Aided Mater. Des. - 2003. - V. 10. - P. 143-154.
Xu S. and Deng X. // Nanotechnology. - 2008. - V. 19. - P. 115705.
Wu W.-P. and Yao Z.-Z. // Theor. Appl. Fract. Mech. - 2012. - V. 62. - P. 67-75.