Formation of excess atomic volume and its role in the processes of fracture of nickel single crystal | Izvestiya vuzov. Fizika. 2021. № 7. DOI: 10.17223/00213411/64/7/24

Formation of excess atomic volume and its role in the processes of fracture of nickel single crystal

Molecular dynamics simulation of crack propagation peculiarities in a nickel single crystal under uniaxial tension along the cubic direction was carried out. It was found that at room temperature regions with excess atomic volume are formed near the tips of the opening crack. Subsequently nanopores are formed in these areas which then merge with the crack stimulating high-speed opening. It is shown that if dislocations begin to form at the crack tip in a region with an increased atomic volume the crack propagation velocity in this direction significantly decreases.

Download file
Counter downloads: 31

Keywords

single crystal, fracture, nickel, crack, dislocation, excess atomic volume, uniaxial tension, molecular dynamics

Authors

NameOrganizationE-mail
Kryzhevich D.S.Institute of Strength Physics and Materials Science of SB RASkryzhev@ispms.ru
Korchuganov A.V.Institute of Strength Physics and Materials Science of SB RASavkor@ispms.ru
Zolnikov K.P.Institute of Strength Physics and Materials Science of SB RASkost@ispms.ru
Всего: 3

References

Pao C.W., Foils S.M., Webb E.B., et al. // Phys. Rev. B. - 2009. - V. 79. - P. 224113.
Hu S.Y., Ludwig M., Kizler P., et al. // Modell. Simul. Mater. Sci. Eng. - 1998. - V. 6. - P. 567-586.
Matsumoto R., Nakagaki M., Nakatani A., et al. // CMES-Comput. Modell. Eng. Sci. - 2005. -V. 9. - P. 75-84.
Li L., Shen L., and Proust G. // Mech Mater. - 2015. - V. 81. - P. 84-93.
Yang S., Ma G., Ren X., and Ren F. // Eng. Anal. Bound Elem. - 2014. - V. 43. - P. 37-49.
Özden U.A., Bezold A., and Broeckmann C. // Proc. Mater. Sci. - 2014. - V. 3. - P. 1518-1523.
Keyhani A., Goudarzi M., Mohammadi S., and Roumina R. // Comput. Mater. Sci. - 2015. - V. 104. - P. 98-107.
Petucci J., LeBlond C., and Karimi M. // Comput. Mater. Sci. - 2014. - V. 86. - P. 130-139.
Leung K.W.K., Pan Z.L., and Warner D.H. // Acta Mater. - 2014. - V. 77. - P. 324-334.
Zolnikov K.P., Korchuganov A.V., Kryzhevich D.S., et al. // Phys. Mesomech. - 2019. - V. 22. - P. 355-364.
Зольников К.П., Крыжевич Д.С., Корчуганов А.В. // Изв. вузов. Физика. - 2020. - Т. 63. - № 6. - C. 43-49.
Zhang J. and Ghosh S. // J. Mech Phys. Solid. - 2013. - V. 61. - P. 1670-1690.
Cui C.B. and Beom H.G. // Mater. Sci. Eng. A. - 2014. - V. 609. - P. 102-109.
Xu S. and Deng X. // Nanotechnology. - 2008. - V. 19. - P. 115705.
Zhang J. and Ghosh S. // J. Mech. Phys. Solid. - 2013. - V. 61. - P. 1670-1690.
Sung P.H. and Chen T.C. // Comput. Mater. Sci. - 2015. - V. 102. - P. 151-158.
Korchuganov A.V., Tyumentsev A.N., Zolnikov K.P., et al. // J. Mater. Sci. Technol. - 2019. - V. 35. - Iss. 1 - P. 201-206.
Psakhie S.G., Zolnikov K.P., Kryzhevich D.S., and Korchuganov A.V. // Sci. Rep. - 2019. - V. 9. - Art. 3867.
Zolnikov K.P., Kryzhevich D.S., and Korchuganov A.V. // Lett. Mater. - 2019. - V. 9. - Iss. 2. - P. 197-201.
Kryzhevich D.S., Zolnikov K.P., and Korchuganov A.V. // Comput. Mater. Sci. - 2018. - V. 153. - P. 445-448.
Zheng H., Cao A., Weinberger C., et al. // Nat. Commun. - 2010. - V. 1. - P. 144.
Sorkin V., Polturak E., and Adler J. // Phys. Rev. B. - 2003. - V. 68. - P. 174102.
Plimpton S. // J. Comput. Phys. - 1995. - V. 117. - P. 1-19.
Foiles S.M., Baskes M.I., and Daw M.S. // Phys. Rev. B. - 1986. - V. 33. - P. 7983.
Honeycutt J.D. and Andersen H.C. // J. Phys. Chem. - 1987. - V. 91. - P. 4950-4963.
Stukowski A. and Albe K. // Model. Simul. Mater. Sci. Eng. - 2010. - V. 18. - P. 085001.
Stukowski A. // Model. Simul. Mater. Sci. Eng. - 2010. - V. 18. - P. 015012.
Cleri F., Yip S., Wolf D., and Phillpot S.R. // Phys. Rev. Lett. - 1997. - V. 79. - P. 1309-1312.
Kimizuka H., Kaburaki H., Shimizu F., and Li J. // J. Comput.-Aided Mater. Des. - 2003. - V. 10. - P. 143-154.
Xu S. and Deng X. // Nanotechnology. - 2008. - V. 19. - P. 115705.
Wu W.-P. and Yao Z.-Z. // Theor. Appl. Fract. Mech. - 2012. - V. 62. - P. 67-75.
 Formation of excess atomic volume and its role in the processes of fracture of nickel single crystal | Izvestiya vuzov. Fizika. 2021. № 7. DOI: 10.17223/00213411/64/7/24

Formation of excess atomic volume and its role in the processes of fracture of nickel single crystal | Izvestiya vuzov. Fizika. 2021. № 7. DOI: 10.17223/00213411/64/7/24