Distribution on microhardness, chemical composition and structure over a layer of heat-resistant highyardness alloy formed by multilayer plasma surfacing in a nitrogen medium
Microhardness distributions, surface morphology, and elemental composition of a deposited layer of a heat-resistant alloy of the type P2M8U steel formed by plasma surfacing in a protective-alloying nitrogen medium are studied. It was established that the surfacing technology and surfacing material allows to obtain a high-quality deposited alloy without cracks, pores, slag inclusions and defects of macro- and microstructure. It has been established that the deposited material is pearlite grains at the boundaries and grain junctions of which are carbonitrides based on iron, tungsten, chromium, molybdenum, aluminum (Fe6 W6 NC and AlN).
Keywords
plasma surfacing,
protective alloying medium of nitrogen,
heat-resistant metal,
distribution,
microhardness,
structure,
defects of surfacing and structureAuthors
Malushin N.N. | Siberian State Industrial University | nmalushin@mail.ru |
Romanov D.A. | Siberian State Industrial University | romanov_da@physics.sibsiu.ru |
Kovalev A.P. | OJSC «EVRAZ - WSMP» | nmalushin@mail.ru |
Bashchenko L.P. | Siberian State Industrial University | luda.baschenko@gmail.com |
Semin A.P. | Siberian State Industrial University | kafspun@sibsiu.ru |
Gromov V.E. | Siberian State Industrial University | gromov@physics.sibsiu.ru |
Всего: 6
References
Jeng Y.-R., Lee J.-T., Hwu Y.-J., et al. // Tribology Int. - 2020. - V. 148. - No. Art. 106321.
Yan J., Lai Q., Wang J., and Shen Y. // Scripta Mater. - 2020. - V. 182. - P. 104-108.
Rezaii A., Shafiei E., Ostovan F., and Daneshmanesh H. // J. Manufactur. Processes. - 2020. V. 54. - P. 54-69.
Mahmood M.A., Tsai T.-Y., Hwu Y.-J., et al. // J. Mater. Proc. Technol. - 2020. - V. 279. - No. Art. 116554.
Joshi A., Bhatt P.K., and Goyal R.K. // Int. J. Adv. Sci. Technol. - 2020. - V. 29. - No. 8s. - P. 1371- 1377.
Kumar A.V., Murty S.V.S.N., Gupta R.K., et al. // J. Alloys Compounds. - 2020. - V. 831. - No. Art. 154672.
Li J., Ren X., and Gao X. // Mater. Characterizat. - 2020. - V. 164. - No. Art. 110320.
Vávra T., Minárik P., Veselý J., and Král R. // Mater. Sci. Eng. A. - 2020. - V. 784. - No. Art. 139314.
Lee T.J. and Kim W.J. // J. Alloys Compounds. - 2020. - V. 817. - No. Art. 153298.
Малушин Н.Н., Валуев Д.В. Обеспечение качества деталей металлургического оборудования на всех этапах их жизненного цикла путем применения плазменной наплавки теплостойкими сталями высокой твердости. - Томск: Изд-во Томского политехнического университета, 2013. - 358 с.
Romanov D.A. // Mater. Res. Express. - 2020. - V. 7. - No. 4. - P. 045010.
Romanov D., Moskovskii S., Konovalov S., et al. // J. Mater. Res. Technol. - 2019. - V. 8 - No. 6. - P. 5515-5523.
Малушин Н.Н., Романов Д.А., Ковалев А.П. и др. // Изв. вузов. Физика. - 2019. - Т. 62. - № 10. - С. 106-111.
Батаев В.А., Батаев А.А. Композиционные материалы: строение, получение, применение. - Новосибирск: Изд-во НГТУ, 2002. - 383 с.
Кульков С.Н., Гнюсов С.Ф. Карбидостали на основе карбидов титана и вольфрама / под ред. Е.Ф. Дударева. - Томск: Изд-во НТЛ, 2006. - 240 с.