Algebras of symmetry operators of Klein-Gordon-Fock equation for groups acting transitively on two-dimensional subspaces of space-time manifold | Izvestiya vuzov. Fizika. 2021. № 7. DOI: 10.17223/00213411/64/7/126

Algebras of symmetry operators of Klein-Gordon-Fock equation for groups acting transitively on two-dimensional subspaces of space-time manifold

All external electromagnetic fields are found in which the Klein-Gordon-Fock equation for a charged test particle admits first-order symmetry operators provided that the groups G 3, r £ 3, of motions act transitively on the two-dimensional subspace V 2.

Download file
Counter downloads: 48

Keywords

Klein-Gordon-Fock equation, symmetry operators, group of motions of a space-time manifold

Authors

NameOrganizationE-mail
Obukhov V.V.Tomsk State Pedagogical University; Tomsk State University of Control Systems and Radio Electronicsobukhov@tspu.edu.ru
Myrzakulov K.R.L.N. Gumilyov Eurasian National University; Ratbay Myrzakulov Eurasian International Center for Theoretical Physicskrmyrzakulov@gmail.com
Guselnikova U.A.Tomsk State Pedagogical Universityguselnikova.ulyana@yandex.ru
Zhadyranova A.L.N. Gumilyov Eurasian National Universityazhadyranova@gmail.com
Всего: 4

References

Обухов В.В. // Изв. вузов. Физика. - 2020. - Т. 63. - № 7. - С. 21-25.
Obukhov V.V. // Symmetry. - 2020. - V. 12. - P. 1289.
Obukhov V.V. // Int. J. Geom. Meth. Mod. Phys. - 2020. - V. 17. - No. 9. - P. 2050186, DOI: 10.1142/ S0219887820501868.
Obukhov V.V. // Int. J. Geom. Meth. Mod. Phys. - 2021. - V. 18. - P. 2150036. DOI: 10.1142/ S0219887821500365.
Bagrov V.G. and Obukhov V.V. // Theor. Math. Phys. - 1993. - V. 97. - No. 2. - P. 1275-1289. DOI: 10.1007/BF01016874.
Obukhov V.V. // Symmetry. - 2021. - V. 13. - No. 4. - P. 727; https://doi.org/10.3390/sym13040727.
Shapovalov A.V. and Shirokov I.V. // Theor. Math. Phys. - 1996. - V. 106. - P. 3-15.
Magazev A.A., Shirokov I.V., and Yurevich Y.A. // Theor. Math. Phys. - 2008. - V. 156. - P. 1127-1140. DOI: 10.4213/tmf6240.
Magazev A.A. // Math. Phys. Anal. Geom. - 2021. - V. 24. - No. 2. - P. 11. DOI: 10.1007/s11040-021-09385-3.
Magazev A.A. // Theor. Math. Phys. - 2012. - V. 173. - P. 1654-1667.
Shapovalov A.V. and Breev A.I. // Int. J. Geom. Meth. Mod. Phys. - 2018. - V. 15. - P. 1850085.
Бреев A.И., Шаповалов A.В. // Изв. вузов. Физика. - 2016. - Т. 59. - № 11. - С. 193-196.
Shapovalov A. and Breev A. // Symmetry. - 2020. - V. 12. - P. 1867. DOI: 10.3390/sym12111867.
Петров А.З. // Пространства Эйнштейна. - М.: Наука, 1961. - 495 с.
Nojiri S., Odintsov S.D., and Oikonomou V.K. // Ann. Phys. - 2020. - V. 418. - P. 168186.
Odintsov S.D. and Oikonomou V.K. // EPL. - 2020. - V. 129. - No. 4. - P. 40001.
Capozziello S., De Laurentis M., Nojiri S., and Odintsov S.D. // Phys. Rev. D. - 2017. - V. 95. - No. 8. - P. 083524.
Осетрин К.Е., Филиппов А.Е., Осетрин Е.К. // Изв. вузов. Физика. - 2018. - Т. 61. - № 8. - С. 17-23.
Osetrin E. and Osetrin K. // J. Math. Phys. - 2017. - V. 58. - No. 11. - P. 112504; https://doi.org/10.1063/1.5003854
Osetrin K., Filippov A., and Osetrin E. // Mod. Phys. Lett. A. - 2016. - V. 31. - No. 6. - P. 1650027; https://doi.org/10.1142/S0217732316500279.
 Algebras of symmetry operators of Klein-Gordon-Fock equation for groups acting transitively on two-dimensional subspaces of space-time manifold | Izvestiya vuzov. Fizika. 2021. № 7. DOI: 10.17223/00213411/64/7/126

Algebras of symmetry operators of Klein-Gordon-Fock equation for groups acting transitively on two-dimensional subspaces of space-time manifold | Izvestiya vuzov. Fizika. 2021. № 7. DOI: 10.17223/00213411/64/7/126