Mathematical modeling of the melting process of silicate materials in plasma reactor
The paper presents the results of mathematical modeling of the melting process of silicate material in reactor. The source of heating in this technological process is an electric arc plasmatron operating on compressed air. Model material, we used quartz sand containing up to SiO2 ~ 98 wt. %. It was found that at temperature ( Tf = 2500 K) of the air-plasma medium in the initial period of time, the gas temperature near the interface is below the melting temperature. Result of the process heat exchange in the gas phase, heat energy is transferred first from the central and then from the upper layers to the interface. If the supply of thermal energy in the gas phase turns out to be sufficient for the implementation of phase transition, then after some time the melting process begins. With an increase in the initial temperature ( Tf = 3000 K), the melting process begins almost instantly ( tm = 0.2 s). In this case, an almost constant temperature is established at the interface, slightly exceeding the melting temperature. It was found that the propagation velocity of the melting front is determined by the initial temperature of the gas phase and the thermo physical characteristics of the material, but weakly depends on the thickness of the layer of the filled material.
Keywords
silicate materials,
quartz sand,
heat transfer,
melting,
mathematical modeling,
Stefan's problemAuthors
Shekhovtsov V.V. | Tomsk State University of Architecture and Building | shehovcov2010@yandex.ru |
Volokitin O.G. | Tomsk State University of Architecture and Building | volokitin_oleg@mail.ru |
Matvienko O.V. | Tomsk State University of Architecture and Building | matvolegv@mail.ru |
Всего: 3
References
Poerschke D.L., Shaw J.H., Verma N., et al. // Acta Mater. - 2018. - V. 145. - P. 451-461.
Sborshchikov G.S. and Terekhova A.Y. // Refractor. Industrial Ceram. - 2017. - V. 57. - No. 6. - P. 574-577.
Davidenko A.O., Sokol'Skii V.E., Roik A.S., and Goncharov I.A. // Inorg. Mater. - 2014. - V. 50. - No. 12. - P. 1289-1296.
Hasegawa H., Ohta H., Shibata H., and Waseda Y. // High Temp. Mater. Proc. - 2013. - V. 31. - No. 4-5. - P. 491-499.
Peretyazhko I.S., Savina E.A., Karmanov N.S., and Dmitrieva A.S. // Petrology. - 2018. - V. 26. - No. 4. - P. 389-413.
Ma Z., Tian X., Liao H., et al. // J. Cleaner Production. - 2018. - V. 171. - P. 464-481.
Bristogianni T., Oikonomopoulou F., Yu R., et al. // Glass Structur. Eng. - 2020. - V. 5. - No. 3. - P. 445-487.
Карпов С.А., Бутов В.Г., Солоненко В.А., Брендаков В.Н. // Изв. вузoв. Физика. - 2021. - Т. 64. - № 2-2. - С. 40-45.
Власов В.А., Шеховцов В.В., Волокитин О.Г. и др. // Изв. вузов. Физика. - 2018. - Т. 61. - № 4. - С. 92-98.
Волокитин О.Г., Шеховцов В.В. // Вестник Томского государственного архитектурно-строительного университета. - 2017. - Т. 60. - № 1. - С. 144-148.
Cetegen B.M. and Basu S. // J. Therm. Spray Technol. - 2009. - V. 18. - P. 769-793.
Aghasibeig M., Tarasi F., Lima R.S., et al. // J. Therm. Spray Technol. - 2019. - V. 28. - P. 1579- 1605.
Fauchais P., Vardelle M., Vardelle A., and Goutier S. // J. Therm. Spray Technol. - 2015. - V. 24. - P. 1120-1129.
Xiuquan Cao, Chao Li, Lin Chen, and Bo Huang // EPLS. - 2020. - V. 48. - No. 4. - P. 961-968.
Власов В.А., Волокитин О.Г., Волокитин Г.Г. и др. // Инженерно-физический журнал. - 2016. - Т. 89. - № 1. - С. 143-147.
Шеховцов В.В., Власов В.А., Волокитин Г.Г., Волокитин О.Г. // Изв. вузов. Физика. - 2016. - Т. 59. - № 9/3. - С. 305-308.
Матвиенко О.В. // Инженерно-физический журнал. - 2014. - Т. 87. - № 4. - С. 908-918.
Архипов В.А., Матвиенко О.В., Трофимов В.Ф. // ФГВ. - 2005. - Т. 41. - № 2. - С. 26-37.
Javierre-Pérez E. Literature Study: Numerical methods for solving Stefan problems, Report 03-16. - Delft: Delft University of Technology, 2003. - 94 p.
Патанкар С. Численные методы решения задач теплообмена и динамики жидкости: пер. с англ. - М.: Энергоатомиздат, 1984. - 152 с.
Джонсон К. Численные методы в химии. - М.: Мир, 1983.