Structural and optical properties of a hybrid material based on tin oxides and multilayer periodic structures with pseudomorphic gesisn layers
A hybrid material has been first obtained including tin oxides on top of a Ge0.3Si0.7- y Sn y /Si multiple quantum well structure. Tin oxides such as SnO and SnO2 were formed as a result of phase transitions during the oxidation of polycrystalline tin films (β-Sn). The photoluminescence was demonstrated with an maximum intensity at about 2.34 eV, which corresponds to the band gap of SnO. The glow at the photogeneration point is seen in green. The photoluminescence from SnO is observed after the annealing in the temperature range of 300-400 °C. An increase in the annealing temperature leads to a sharp quenching of the photoluminescence. It is associated with the phase transition of SnO to SnO2. The growth of Ge0.3Si0.7- y Sn y /Si multilayer structures is studied at the Sn content from 0 to 18%. It was found that GeSiSn compounds are thermally stable in the annealing temperature range of 300-550 °C. In addition to the photoluminescence signal in the visible range from tin oxides, the photoluminescence signal in the infrared range of about 3 μm appears. It is formed from the GeSiSn/Si structure.
Keywords
molecular beam epitaxy,
hybrid material,
tin oxide,
solid solution,
diffraction reflection curve,
multiple quantum well,
photoluminescenceAuthors
Timofeev V.A. | Institute of Semiconductor Physics SB RAS | vyacheslav.t@isp.nsc.ru |
Mashanov V.I. | Institute of Semiconductor Physics SB RAS | mash@isp.nsc.ru |
Nikiforov A.I. | Institute of Semiconductor Physics SB RAS; National Research Tomsk State University | nikif@isp.nsc.ru |
Loshkarev I.D. | Institute of Semiconductor Physics SB RAS | idl@isp.nsc.ru |
Skvortsov I.V. | Institute of Semiconductor Physics SB RAS | i.skvortsov@g.nsu.ru |
Gulyaev D.V. | Institute of Semiconductor Physics SB RAS | gulyaev@isp.nsc.ru |
Korolkov I.V. | Institute of Inorganic Chemistry SB RAS | korolkov@niic.nsc.ru |
Kolyada D.V. | Saint-Petersburg Electrotechnical University 'LETI' | kolyada.dima94@mail.ru |
Firsov D.D. | Saint-Petersburg Electrotechnical University 'LETI' | d.d.firsov@gmail.com |
Komkov O.S. | Saint-Petersburg Electrotechnical University 'LETI' | okomkov@yahoo.com |
Всего: 10
References
Kong S., Heo J., Boughorbel F., et al. // Int. J. Comput. Vis. - 2007. - V. 71. - P. 215.
Chan A.L. and Schnelle S.R. // Opt. Eng. - 2013. - V. 52. - P. 017004.
Guo W., Fu L., Zhang Y., et al. // Appl. Phys. Lett. - 2010. - V. 96. - P. 042113.
Palanichamy S., Mohamed J.R., Kumar K.D.A., et al. // Optik - Int. J. Light and Electron Opt. - 2019. - V. 194. - P. 162887.
Nikiforov A., Timofeev V., Mashanov V., et al. // Appl. Surf. Sci. - 2020. - V. 512. - P. 145735.
Gassenq A., Gencarelli F., Van Campenhout J., et al. // Opt. Exp. - 2012. - V. 20. - P. 27297.
Assali S., Nicolas J., Mukherjee S., et al. // Appl. Phys. Lett. - 2018. - V. 112. - P. 25903.
Timofeev V.A., Nikiforov A.I., Tuktamyshev A.R., et al. // Nanotechnology. - 2018. - V. 29. - P. 154002.
Zhang D., Jin L., Li J., et al. // J. Alloys Compd. - 2016. - V. 665. - P. 131.
Von den Driesch N., Stange D., Wirths S., et al. // Small. - 2017. - V. 13. - P. 1603321.
Von den Driesch N., Stange D., Rainko D., et al. // Solid State Electron. - 2019. - V. 155. - P. 139.
Nunes D., Pimentel A., Gonçalves A., et al. // Semicond. Sci. Technol. - 2019. - V. 34. - P. 043001.
Guillén C. and Herrero J. // J. Mater. Sci. Technol. - 2019. - V. 35. - P. 1706.
Liang L.Y., Liu Z.M., Cao H.T., et al. // ACS Appl. Mater. Interf. - 2010. - V. 2. - P. 1565.
Zheng H., Gu C.-D., Wang X.-L., and Tu J.-P. // J. Nanopart. Res. - 2014. - V. 16. - P. 2288.
Daeneke T., Atkin P., Orrell-Trigg R., et al. // ACS Nano. - 2017. - V. 11. - P. 10974.
Li J.-C. and Yuan H.-L. // Cryst. Res. Technol. - 2017. - V. 52. - P. 1700183.
Kilic C. and Zunger A. // Phys. Rev. Lett. - 2002. - V. 88. - P. 095501.
Montero J., Herrero J., and Guillen C. // Solar Energy Mater. Solar Cells. - 2010. - V. 94. - P. 612.
Ahmed A., Tripathi P., Siddique M.N., and Ali T. // IOP Conf. Ser.: Mater. Sci. Eng. - 2017. - V. 225. - P. 012173.
Timofeev V., Nikiforov A., Yakimov A., et al. // Semicond. Sci. Technol. - 2019. - V. 34. - P. 014001.
Wirths S., Geiger R., von den Driesch N., et al. // Nature Photonics. - 2015. - V. 9. - P. 88.
Zhou Y., Miao Y., Ojo S., et al. // Optica. - 2020. - V. 7. - P. 924.
Tsukamoto T., Hirose N., Kasamatsu A., et al. // Appl. Phys. Lett. - 2015. - V. 106. - P. 052103.
Tsukamoto T., Hirose N., Kasamatsu A., et al. // J. Mater. Sci. - 2015. - V. 50. - P. 4366.
Tsukamoto T., Hirose N., Kasamatsu A., et al. // Electron. Mater. Lett. - 2019. - V. 16. - P. 9.
Fischer I.A., Clausen C.J., Schwarz D., et al. // Phys. Rev. Mater. - 2020. - V. 4. - P. 024601.
Wang X., Cuervo Covian A., Je L., et al. // Frontiers Phys. - 2019. - V. 7. - P. 134.
Xie J., Chizmeshya A.V.G., Tolle J., et al. // Chem. Mater. - 2010. - V. 22. - P. 3779.
Nikiforov A.I., Mashanov V.I., Timofeev V.A., et al. // Thin Solid Films. - 2014. - V. 557. - P. 188.
Timofeev V., Mashanov V., Nikiforov A., et al. // Appl. Surf. Sci. - 2021. - V. 553. - P. 149572.