Torque control of new energy four wheel hub motor based on distribution algorithm
Due to the nonlinear, strong coupling and uncertain parameters of the new energy four-wheel hub motor, it is more difficult to control the torque of the motor. In order to solve this problem, a torque control method of the new energy four-wheel hub motor based on the distribution algorithm is proposed. The dynamic model of the new energy four-wheel hub motor is established, and the unmeasurable flux, electric power and other state variables in the motor model are derived according to the degree of freedom of the body. The whole four-wheel hub motor is taken as the research object, and the optimal efficiency of the drive system is taken as the goal, and the distribution algorithm is used to control the electromagnetic torque of the motor. The simulation results show that after the torque control of new energy four wheel hub motor, the driving range of the vehicle is longer, the amplitude of stator flux changes little, the stator current changes and the stability of motor speed are good, and the torque control effect is better.
Keywords
distribution algorithm,
new energy,
four wheel hub motor,
torque control,
dynamic modelAuthors
Shuai Leng | College of Automotive Engineering, Jilin University | lindonger03@163.com |
Liqiang Jin | College of Automotive Engineering, Jilin University | jinlq1314@163.com |
Всего: 2
References
Pitakaso R., Sethanan K., and N Srijaroon // Eng. Optimiz. - 2020. - V. 52. - No. 7. - P. 1225-1243.
Kuang Z.F., Li G.Q., Zhang L.B., et al. // Peer-to-Peer Netw. Appl. - 2020. - V. 12. - No. 6. - P. 1-16.
Liu L.J., Zhang Y., Da C., et al. // Int. Trans. Elec. Energ. Syst. - 2020. - V. 30. - No. 6. - P. 35-46.
Usharani R. and Sivkumar M. // Appl. Soft Comput. J. - 2020. - V. 92. - No. 5. - P. 106-113.
Xie L., Liu S.B., Yao W.X., et al. // Mech. Elec. Eng. Mag. - 2017. - V. 34. - No. 10. - P. 1156-1161.
Gao C., Feng Y.B., and Chen K.H. // Ship Sci.Technol. - 2017. - V. 39. - No. 10. - P. 88-91.
Narges M.N., Mostafa A.A., and Mohammad M. // Commun. Statist-Theor. Method. - 2020. - V. 49. - No. 11. - P. 2728-2748.
Alejandradela G. and Luis A.I. // Elec. Power Compon. Syst. - 2020. - V. 48. - No. 1. - P. 485-496.
Tang G.D., Kong W.B., and Zhang T. // J. Electr. Eng. Tech. - 2020. - V. 15. - No. 10. - P. 163-177.
Mohamad A., Jafar M., Davood A.K., et al. // Elec. Eng. - 2020. - V. 19. - No. 6. - P. 1-13.
Zhu J.J., Wang Z.P., Zhang L., et al. // Mech. Mach. Theor. - 2019. - V. 142. - No. 5. - P. 356-363.
Hichem H., Lazhar R., and Nouri B. // Int. Trans. Elect. Energ. Syst. - 2019. - V. 29. - No. 4. - P. 88-96.
Yang X.L., Liu G.R., Van D.L., et al. // IEE J. Trans. Elect. Elect. Eng. - 2019. - V. 14. - No. 11. - P. 1691-1702.
Shi P.C., Shi P.L., Yan C.S., et al. // J. Mech. Eng. Sci. - 2019. - V. 233. - No. 3. - P. 848-856.
Hu Y., Dong S.J., Cai W.W., et al. // Modular Mach. Tool Autom. Manuf. Tech. - 2019. - V. 15. - No. 6. - P. 86-89.
Ji Y.J., Ren L.H., and J Zhou.S. // Veh. Syst. Dyn. - 2018. - V. 56. - No. 12. - P. 1883-1898.
Tang Q.D., Ge X.L., Liu Y.C., et al. // Trans. China Electr. Soc. - 2018. - V. 33. - No. 12. - P. 1293-1301.
Liu Q.H., Mao W., and Gao Y. // Elec. Pow. Automat. Equip. - 2018. - V. 38. - No. 9. - P. 85-92.
Kang J.S. and Wang S. // Trans. China Electr. Soc. - 2019. - V. 34. - No. 8. - P. 1616-1625.
Bi D.Q., Guo R.G., and Chen H.T. // Exp. Techn. Manag. - 2018. - V. 35. - No. 12. - P. 92-96.
Cao Y., Wang Q., Cheng W., Nojavan S., and Jermsittiparsert K. // Int. J. Hydrogen. Energ. - 2020. - V. 45. - P. 14108-14118.
Citil H.G. // Appl. Math. Nonlinear. Sci. - 2019. - V. 4. - P. 305-314.
Parra A., Zubizarreta A., Perez J., and Dendaluce M. // Complex. - 2018. - V. 2018. - P. 1-14.
Akganduller O., Atmaca S.P., and Akgüller O. // Appl. Math. Nonlinear Sci. - 2020. - V. 5. - No. 1. - P. 349-360.
Sulaiman T.A., Bulut H., and Atas S.S. // Appl. Math. Nonlinear Sci. - 2019. - V. 4. - No. 2. - P. 535-542.