Influence of thermal treatment of Ti-45Nb alloy in ultrafine-grained states on its structural parameters and heat capacity
The effect of heat treatment of the Ti-45Nb alloy in the UFG state on its structural parameters (lattice parameters, volumetric phase ratio, sizes of coherent scattering regions, residual normal stresses) and their relationship with heat capacity have been studied. It has been established that the different character of the temperature dependence of the heat capacity for the Ti-45Nb alloy in the UFG and CC states is associated with the structural-phase features of the alloy in the UFG state: the two-phase structure of a-grains and b-grains, dispersion-hardened by the ω-phase, and phase transitions in the temperature range 400-600 °С.
Keywords
alloy Ti 45 wt% Nb,
ultrafine-grained microstructure,
X-ray diffraction analysis,
heat capacity,
phase transitionsAuthors
Legostaeva E.V. | Institute of Strength Physics and Materials Science of SB RAS | lego@ispms.tsc.ru |
Khimich M.A. | Institute of Strength Physics and Materials Science of SB RAS | khimich@ispms.tsc.ru |
Sharkeev Yu.P. | Institute of Strength Physics and Materials Science of SB RAS | sharkeev@ispms.tsc.ru |
Eroshenko A.Yu. | Institute of Strength Physics and Materials Science of SB RAS | eroshenko@ispms.tsc.ru |
Belyavskaya O.A. | Institute of Strength Physics and Materials Science of SB RAS | obel@ispms.tsc.ru |
Zhilyakov A.Yu. | Institute of Strength Physics and Materials Science of SB RAS | a.y.zhilyakov@urfu.ru |
Kuznetsov V.P. | Institute of Strength Physics and Materials Science of SB RAS | wpkuzn@mail.ru |
Всего: 7
References
Liu X., Chen Sh., Tsoi J.K.H., and Matinlinna J.P. // Regenerative Biomater. - 2017. - V. 4. - No. 5. - P. 315-323.
Chen Qizhi and Thouas George A. // Mater. Sci. Eng.: R: Reports. - 2015. - V. 87. - P. 1-57.
Heltha A., Pilza S., Kirstena T., et al. // J. Mech. Behavior Biomed. Mater. - 2017. - V. 65. - P. 137-150.
Valiev R.Z., Zhilyaev A.P., and Langdon T.G. Bulk Nanostructured Materials: Fundamentals and Ap-plications. - New Jersey: John Wiley & Sons, 2014. - 456 p.
Кардашев Б.К., Нарыкова М.В., Бетехтин В.И. и др. // Физ. мезомех. - 2019. - Т. 22. - № 3. - С. 71-76.
Niinomi М., Liu Yi, Nakai М., et al. // Regenerative Biomater. - 2016. - V. 3. - No. 3. - P. 173-185.
Eroshenko A.Yu., Mairambekova A.M., Sharkeev Yu.P., et al. // Lett. Mater. - 2017. - V. 4. - No. 7. - P. 469-472.
Ерошенко А.Ю., Шаркеев Ю.П., Глухов И.А. и др. // Изв. вузов. Физика. - 2018. - Т. 61. - № 10. - С. 136-143.
Ladd M. and Palmer R. Structure Determination by X-ray Crystallography: Analysis by X-rays and Neutrons. - N.Y.: Springer, 2013. - 784 p.
Горелик С.С. Рентгенографический и электронно-оптический анализ. - М.: Металлургия, 1970. - 366 с.
ASTM E1269 (2011) Standard test Method for determining specific heat capacity by differential scanning calorimetry.
Ivanov I.V., Lazurenko D.V., Stark A., et al. // Metal. Mater. Int. - 2020. - V. 26. - No. 1. - P. 83-93.
Thoemmes A., Ivanov I.V., and Ruktuev A. // Mater. Sci. Forum. - 2019. - V. 946. - P. 287-292.
Prabha A.J., Raju S., Jeyaganesh B., et al. // Physica B: Cond. Matter. - 2011. - V. 406. - No. 22. - P. 4200-4209.
Cremasco A., Andrade P.N., Contieri R.J., et al. // Mater. Design. - 2011. - V. 32. - No. 4. - P. 2387-2390.
Lopes E.S.N., Cremasco A., Afonso C.R.M., et al. // Mater. Characterization. - 2011. - V. 62. - No. 7. - P. 673-680.
Prima F., Vermaut P., Texier G., et al. // Scripta Mater. - 2006. - V. 54. - No. 4. - P. 645-648.
Sharkeev Yu.P., Vavilov V.P., Skrypnyak V.A., et al. // Mater. Sci. Eng.: A. - 2020. - V. 784. - P. 139203-139221.
Легостаева Е.В., Шаркеев Ю.П., Белявская О.А. и др. // Изв. вузов. Физика. - 2020. - T. 63. - № 11. - С. 28-35.
Gorbatov V.I., Polev V.F., Pilugin V.P., et al. // High Temperature. - 2013. - V. 51. - No. 4. - P. 482-485.
Смирнов А.Л., Талуц С.Г., Ивлиев А.Д. и др. // ТВТ. - 2017. - Т. 55. - № 3. - С. 396-401.