Investigation of combustion synthesis products in titanium, carbon and aluminum powder mixtures
Products of the combustion in titanium, carbon (black carbon) and aluminum powder mixtures have been investigated by X-ray diffraction, scanning electron microscopy and local X-ray spectroscopy methods. Titanium carbide and ternary compounds are synthesized in wave mode combustion reaction. An impact of the carbon to aluminum ratio in the reaction mixtures on combustion temperature, phase composition and microstructure of the synthesis products is determined. The titanium carbide was found to be the basic phase in the synthesis products. The size of the carbide particles in the composite structure decreases monotonously as the carbon to aluminum ratio reduces. This is due to the combustion temperature drop when carbon to aluminum ratio reduction. On the basis of results of the structure researches the prospects of using of the composites for the coatings deposition and for production of the solid materials by hot compacting or spark plasma sintering.
Keywords
Titanium,
carbon,
aluminum powder mixtures,
synthesis,
combustion temperature,
composite,
microstructure,
phase compositionAuthors
Pribytkov G.A. | Institute of Strength Physics and Materials Science of SB RAS | gapribyt@mail.ru |
Firsina I.A. | Institute of Strength Physics and Materials Science of SB RAS | iris1983@yandex.ru |
Korzhova V.V. | Institute of Strength Physics and Materials Science of SB RAS | vicvic5@mail.ru |
Baranovskii A.V. | Institute of Strength Physics and Materials Science of SB RAS | nigalisha@gmail.com |
Krinitsyn M.G. | Institute of Strength Physics and Materials Science of SB RAS | krinmax@gmail.com |
Всего: 5
References
Loria E.A. // Intermetallics. - 2000. - V. 8. - Iss. 9-11. - P. 1339-1345.
Cheng T.T. // Intermetallics. - 1999. - V. 7. - Iss. 1. - P. 89-99.
Tetsui T. // Intermetallics. - 2002. - V. 10. - Iss. 3. - P. 239-245.
Kevorkijan V.S. and Škapin D. // Association of Metallurgical Engineers of Serbia AMES. - 2009. - V. 15. - Iss. 2. - P. 75-89.
Yue Y.L., Gong Y.S., Wu H.T., Wang C.B., and Zhang L.M. // J. Wuhan University of Technology, Materials Science Edition. - 2004. - V. 19. - Iss. 1. - P. 1-4.
Li Jianing, Chen Chuanzhang, and Zong Lei. // Int. J. Refractory Metals and Hard Materials. - 2011. - V. 29 - P. 49-53.
Li Jianing, Chen Chuanzhang, Tiziano Squartini, and Qingshan He // Appl. Surf. Sci. - 2010. - V. 257. - P.1550-1555.
Dale Perry L. Handbook of Inorganic Compounds. 2nd Edition. - Taylor & Francis Group, 2011.
Birol Yucel // J. Alloys Compounds. - 2006. - V. 422. - P. 128-131.
Liu Xiaoteng and Hao Hai // J. Alloys Compounds. - 2015. - V. 623. - P. 266-273.
Pribytkov G.A., Krinitсyn M.G., Korzhova V.V., Baranovskii A.V. // Russ. J. Non-Ferrous Metals. - 2020. - V. 61. - No. 2. - P. 207-215.
Zhou Aiguo, Wang Chang, Ge Zhenbin, and Wu Lifeng // J. Mater. Sci. Lett. - 2001. - V. 20. - P. 1971-1973.
Hendaoui A., Andasmas M., Amara A., et al. // Int. J. Self-Propagating High-Temperature Synthesis. - 2008. - V. 17. - No. 2. - P. 129-135.
Shahin N., Kazemi Sh., HeIdarpour A. // Adv. Powder Technol. - 2016. - V. 27. - P. 1775-1780.
Potanin A.Y u., Loginov P.A., Levashov E.A., et al. // Eurasian Chemico-Technol. J. - 2015. - V. 17. - P. 233-242.
Stolin A.M., Vrel D., Galyshev S.N., et al. // Int. J. Self-Propagating High-Temperature Synthesis. - 2009. - V. 18. - No. 3. - P. 194-199.
Pribytkov G.A., Firsina I.A., Korzhova V.V., et al. // Russ. J. Non-Ferrous Metals Res. - 2019 - V. 60. - No. 3. - P. 282-289.
Korosteleva E.N., Pribytkov G.A., Krinitcyn M.G., et al. // Key Eng. Mater. - 2016. - V. 712. - P. 195-199.