Application of artificial neural networks in studying the dynamic structure of the near-Earth orbital space | Izvestiya vuzov. Fizika. 2021. № 10. DOI: 10.17223/00213411/64/10/38

Application of artificial neural networks in studying the dynamic structure of the near-Earth orbital space

A description of the technique for studying the dynamic structure of the near-Earth orbital space using machine learning technology is presented. Artificial neural networks were used to process time series associated with the evolution of resonance characteristics that determine the dynamic structure of the near-Earth region up to 120 thousand km along the semi-major axis. The number of the processed series has exceeded half a million, and their manual processing would be time consuming. The results of applying the technique to the analysis of the resonant structure of the selected area of space are presented.

Download file
Counter downloads: 30

Keywords

numerical modeling, AES dynamics, orbital evolution, artificial neural networks, machine learning

Authors

NameOrganizationE-mail
Krasavin D.S.National Research Tomsk State Universityiosfixed@gmail.com
Aleksandrova A.G.National Research Tomsk State Universityaleksandrovaannag@mail.ru
Tomilova I.V.National Research Tomsk State Universityirisha_tom@mail.ru
Всего: 3

References

Красавин Д.С., Александрова А.Г., Томилова И.В. // Изв. вузов. Физика. - 2020. - Т. 63. - № 3. - C. 70-75.
Александрова А.Г., Бордовицына Т.В., Чувашов И.Н. // Изв. вузов. Физика. - 2017. - Т. 60. - № 1. - C. 69-76.
Александрова А.Г., Авдюшев В.А., Попандопуло Н.А., Бордовицына Т.В. // Изв. вузов. Физика. - 2021. - Т. 64. - № 8. - С. 168-175.
Александрова А.Г., Блинкова Е.В., Бордовицына Т.В. и др. // Астрон. вест. - 2021. - Т. 55. - № 3. - С. 272-287.
Александрова А.Г., Бордовицына Т.В., Попандопуло Н.А. и др. // Изв. вузов. Физика. - 2020. - Т. 63 - № 1. - С. 57-62.
Bishop C.M. Pattern Recognition and Machine Learning. - Springer, eBook, 2006. - 761 p.
Goodfellow I., Bengio Y., Courville A. Deep Learning. - The MIT Press, eBook, 2016. - 800 p. - URL: http://www.deeplearnmgbook.org contents.TOC html (05.12.2020).
Воронцов К.В. Математические методы обучения по прецедентам (машинное обучение). Курс лекций. - URL: http://www.machinelearning.ru (05.12.2020)
Описание библиотеки torch для python. - URL: https: /github.com pytorch pytorch (05.12.2020).
Описание пакет nn библиотеки torch для языка python. - URL: https://pytorch.org docs stable nn.html (06.12.2020).
Плас Дж. Вандер. Python для сложных задач: наука о данных и машинное обучение. - СПб.: Питер, 2018. - 576 с.
Рашка С. Python и машинное обучение: пер. с англ. - М.: ДМК Пресс, 2017. - 420 с.
Ismail Fawaz H., Forestier G., Weber J., et al. // Data Mining and Knowledge Discovery. - 2019. - V. 33. - Iss. 4. - P. 917-963. - DOI: 10.1007/s10618-019-00619-1.
Hagan M.T., Demuth H.B., Hudson Beale M., Jesús O. Neural Network Design. - 2nd Edition. - eBook, 2019. - 1012 p. - URL: https://hagan.okstate.edu/nnd.html (06.12.2019).
Kingma D.P., Welling M. An Introduction to Variational Autoencoders // arXiv.org. - 2019. - URL: https://arxiv.org/abs/1906.02691.
McInnes L., Healy J., Astels S. // JOSS. - 2017. - V. 2(11). - P. 205. - DOI: 10.21105/joss.00205.
Ester M., Kriegel H.-P., Sander J., Xu X. // Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96). - AAAI Press, 1996. - P. 226-231.
 Application of artificial neural networks in studying the dynamic structure of the near-Earth orbital space | Izvestiya vuzov. Fizika. 2021. № 10. DOI: 10.17223/00213411/64/10/38

Application of artificial neural networks in studying the dynamic structure of the near-Earth orbital space | Izvestiya vuzov. Fizika. 2021. № 10. DOI: 10.17223/00213411/64/10/38