Influence of incoherent nanosized particles on the annihilation of dislocations in heterophase aluminum-matrix crystalline alloys
A mathematical model was used to study the evolution of defects in a dispersion-hardened material during plastic deformation. Regularities of the change in the densities of the components of the dislocation subsystem are revealed depending on the volume fraction and scale characteristics of the hardening phase at different temperatures of deformation. It is shown that the annihilation of dislocations decreases significantly with a decrease in the volume fraction of nanosized incoherent particles in all studied materials with strengthening particles of various sizes. It is revealed that the density of dislocations in prismatic loops is largely determined by the size of particles and the volume fraction of the hardening phase.
Keywords
mathematical model,
plastic deformation,
dispersion-hardened materials,
nanoscale particles,
dislocation densityAuthors
Daneyko O.I. | Tomsk State University of Architecture and Building; National Research Tomsk State University | olya_dan@mail.ru |
Kovalevskaya T.A. | Tomsk State University of Architecture and Building; National Research Tomsk State University | takov47@mail.ru |
Shalygina T.A. | Tomsk State University of Architecture and Building | kvm@tsuab.ru |
Simonenko V.G. | State University "Dubna" | simonenko@tpu.ru |
Всего: 4
References
Ashby M.F. // Phil. Mag. - 1966. - V. 14. - No. 132. - P. 1157-1178.
Ebeling R., Ashby M.F. // Phil. Mag. - 1966. - V. 13. - No. 124. - P. 805-834.
Hymphreys F.J., Hirsch P.B. // Pros. R. Soc. Lond. - 1970. - V. A318. - No. 1532. - P. 73-92.
Хирш П.Б., Хэмпфри Ф.Дж. // Физика прочности и пластичности. - М.: Металлургия, 1972. - С. 158-186.
Hazzledine P.M., Hirsch P.B. // Phil. Mag. - 1974. - V. 30. - No. 6. - P. 1331-1351.
Stewart A.T., Martin J.W. // Acta Met. - 1975. - V. 23 - P. 1-7.
Эшби М.Ф. // Физика прочности и пластичности. - М.: Металлургия, 1972. - С. 88-108.
Humphreys F.J., Hirsch P.B. // Phil. Mag. - 1978. - V. 34. - P. 373-399.
Попов Л.Е., Кобытев В.С., Ковалевская Т.А. // Изв. вузов. Физика. - 1982. - Т. 25. - № 6. - С. 56-82.
Попов Л.Е., Кобытев В.С., Ковалевская Т.А. Пластическая деформация сплавов. - М.: Металлургия, 1984. - 182 с.
Ковалевская Т.А., Виноградова И.В., Попов Л.Е. Математическое моделирование пластической деформации гетерофазных сплавов. - Томск.: Изд-во Том. ун-та, 1992. - 168 с.
Данейко О.И., Ковалевская Т.А., Матвиенко О.В. // Изв. вузов. Физика. - 2018. - Т. 61. - № 7. - С. 40-46.
Данейко О.И., Ковалевская Т.А.// Изв. вузов. Физика. - 2018. - Т. 61. - № 9. - С. 120-127.
Matvienko O., Daneyko O., Kovalevskaya T. // Acta Metall. Sin. (Engl. Lett.). - 2018. - V. 31. - No. 12. - P. 1297-1304.
Matvienko O., Daneyko O., Kovalevskaya T. // Crystals. - 2020. - V. 10. - No. 12. - P. 1-18.
Ковалевская Т.А., Данейко О.И.// Изв. вузов. Физика. - 2019. - Т. 62. - № 12. - С. 81-87.
Ковалевская Т.А., Данейко О.И., Шалыгина Т.А. // Изв. вузов. Физика. - 2020. - Т. 63. - № 4. - С. 139-143.