Formation of structures and mechanical properties of low-carbon steel after longitudinal and helical rolling
The influence of longitudinal and helical rolling on the microstructures formation, mechanical characteristics and cold resistance of Х65 low-carbon steel has been investigated. It was shown that the formation of an elongated dispersed structure of steel after longitudinal rolling with a high proportion of low-angle grain boundaries and a crystallographic texture {001} <110> leads to a significant increase in microhardness, strength properties of steel (σUTS = 1050 MPa), but a decrease in plasticity, fracture toughness (KCV-70 °С = 25 J/cm2) and cold resistance of steel. Tempering of steel after longitudinal rolling contributes to a decrease in microhardness and strength properties (σUTS = 900 MPa), but an improvement in steel ductility (up to ε = 15%) and fracture toughness (KCV-70 °С = 195 J/cm2). The use of helical rolling allows maintaining a high level of fracture toughness at negative test temperatures (KCV-70 °С = 260 J/cm2) due to the formation of an equiaxed dispersed structure (d = 3.3 μm) with a small fraction and size of pearlite grains, more uniform distribution of structural components and axial texture <110>.
Keywords
low carbon steel,
longitudinal rolling,
helical rolling,
microstructure,
texture,
strength,
fracture toughness,
fracture micro mechanismsAuthors
Gordienko A.I. | Institute of Strength Physics and Materials Science of SB RAS | mirantil@sibmail.com |
Pochivalov Yu.I. | Institute of Strength Physics and Materials Science of SB RAS | pochiv@ispms.tsc.ru |
Vlasov I.V. | Institute of Strength Physics and Materials Science of SB RAS | good0@yandex.ru |
Mishin I.P. | Institute of Strength Physics and Materials Science of SB RAS | mishinv1@yandex.ru |
Всего: 4
References
Urtsev V.N., Shmakov A.V., Mokshin E.D., et al. // Phys. Met. Metallogr. - 2019. - V. 120. - No. 12. - С. 1233-1241.
Эфрон Л.И. Металловедение в «большой» металлургии. Трубные стали. - М.: Металлургиздат, 2012. - 696 с.
Мотовилина Г.Д., Орлов В.В., Хлусова Е.И. // Вопросы материаловедения. - 2005. - Т. 43. - № 3. - С. 5-12.
Деревягина Л.С., Гордиенко А.И., Каширо П.О. // Изв. вузов. Физика. - 2018. - Т. 61. - № 11. - С. 22-28.
Настич С.Ю., Матросов М.Ю. // Металлург. - 2015. - № 9. - С. 5-12.
Galkin S.P. // Steel in Translation. - 2014. - V. 44. - No. 1. - P. 61-64.
Naizabekov A., Volokitina I., Lezhnev S., et al. // J. Mater. Eng. Perform. - 2020. - V. 29. - No. 1. - P. 315-329.
Naizabekov A.B., Lezhnev S.N., Dyja H., et al. // Metalurgija. - 2017. - V. 56. - No. 1-2. - P. 199-202.
Гетманова М.Е., Ливанова О.В., Ливанова Н.О. и др. // Проблемы черной металлургии и материаловедения. - 2017. - № 4. - С. 13-24.
Égiz I.V., Shamrai V.F. // Met. Sci. Heat Treat. - 2003. - V. 45(1). - P. 35-38.
Derevyagina L.S., Gordienko A.I., Pochivalov Y.I., Smirnova A.S. // Phys. Met. Metallogr. - 2018. - V. 119. - No. 1. - P. 83-91.
Jia T., Zhou Y., Jia X., Wang Z. // Metall. Mater. Trans. A. - 2017. - V. 48 - P. 685-696.
Арабей А.Б., Пышминцев И.Ю., Штремель М.А. и др. // Изв. вузов. Черная металлургия. - 2009. - № 3. - С. 3-8.
Farber V.M., Khotinov V.A., Belikov S.V., et al. // Phys. Met. Metallogr. - 2016. - V. 117. - No. 4. - P. 407-421.
Feng L.-L., Hu F., Qiao W.-W., Lu X.-Y. // Kang T'ieh/Iron and Steel. - 2020. - V. 55. - No. 10. - P. 89-95.
Farber V.M., Khotinov V.A., Morozova A.N., Martin T. // Met. Sci. Heat Treat. - 2015. - V. 57. - P. 487-491.
Kang N., Lee Y., Byun S., et al. // Mater. Sci. Eng. A. - 2009. - V. 499. - P. 157-161.
Lee S.-W., Lee S.-I., Hwang B.E. // J. Korean Institute of Metals and Materials. - 2020. - V. 58. - No. 5. - P. 293-303.