Multistage martensitic transformations in nanocrystalline Ti-50.9 at% Ni alloy
Specific features of the spatial distribution of Ti3Ni4 particles in the inhomogeneous grain/subgrain structure of the nanocrystalline Ti-50.9 at.% Ni was identified depending on the aging temperature. It was found that the presence of an ensemble of internal interfaces of various types in the nanostructure promotes a heterogeneous distribution of Ti3Ni4 nanoparticles in the volume of the B2 matrix, which is associated with the precipitation of particles in the region of low-angle subgrain boundaries and suppression of the decomposition of a solid solution in nanograins with high-angle boundaries. The relationship between the evolution of the system of precipitated Ti3Ni4 particles during heat treatment and the staging of martensitic transformations in the nanocrystalline TiNi alloy with an inhomogeneous grain/subgrain structure has been investigated. It is shown that the difference in the structural-phase state of the regions of the substructure and nanograins is the main reason for the implementation of the anomalous effect of the R-phase transformation in the sequence of multistage martensitic transformations B2 ↔ R ↔ B19 '.
Keywords
titanium nickelide,
nanocrystalline alloy,
annealing,
grain/subgrain structure,
Ti3Ni4 particles,
martensite transformationsAuthors
Girsova S.L. | Institute of Strength Physics and Materials Science of SB RAS | girs@ispms.tsc.ru |
Poletika T.M. | Institute of Strength Physics and Materials Science of SB RAS | poletm@ispms.tsc.ru |
Bitter S.M. | Institute of Strength Physics and Materials Science of SB RAS | s_bitter911996@mail.ru |
Lotkov A.I. | Institute of Strength Physics and Materials Science of SB RAS | lotkov@ispms.tsc.ru |
Kudryachov A.N. | Institute of Strength Physics and Materials Science of SB RAS | kudryashovan@gmail.com |
Всего: 5
References
Elahinia M.H., Hashemi M.,Tabesh M., Bhaduri S.B. // Prog. Mater. Sci. - 2012. - V. 57. - P. 911-946.
Otsuka K., Ren X. // Prog. Mater. Sci. - 2005. - V. 50. - P. 511-678.
Zheng Y., Jiang F., Li L., Yang H., Liu Y. // Acta Mater. - 2010. - V. 58. - P. 3444-3458.
Fan G.L., Chen W., Yang S., et al. // Acta Mater. - 2004. - V. 52. - P. 4351-4362.
Khalil-Allafi J., Dlouhý A., Eggeler G. // Acta Mater. - 2002. - V. 50. - P. 4255-4274.
Khalil-Allafi J., Ren X., Eggeler G. // Acta Mater. - 2002. - V. 50. - P. 793-803.
Wang X., Kustov S., Li K., et al. // Acta Mater. - 2015. - V. 82. - P. 224-233.
Shi X., Cui L., Jiang D., et al. // Smart Mater. Struct. - 2015. - V. 24. - P. 072001.
Prokofiev E.A., Burow A., Payton E., Bhaduri S. // Memory Alloys. Adv. Eng. Mater. - 2010. - V. 12. - P. 747-753.
Prokoshkin S., Brailovski V., Dubinskiy S., et al. // Shape Memory Alloys. Shape Memory and Superelasticity. - 2016. - V. 2. - P. 12-17.
Prokoshkin S., Dubinskiy S., Brailovski. // Shap. Mem. Superelasticity. - 2019. - V. 5. - P. 336 - 345.
Nishida M., Wayman C.M., Honma T. // Metall. Trans. - 1986. - V. A17. - P. 1505-1155.
Kim J.I., Miyazaki S. // Acta Mater. - 2005. - V. 53. - P. 4545-4554.
Hu L., Jiang S., Zhang Y. // Metals. - 2017. - V. 7. - P. 145.
Dlouhy A., Khalil-Allafi J., Eggeler G. // Phil. Mag. - 2003. - V. 83. - P. 339-363.
Valiev R.Z., Islamgaliev R.K., Alexandrov // Prog. Mater. Sci. - 2000. - V. 45. - P. 911-946.
Sauvage X., Wilde G., Divinski S.V., et al. // Mater. Sci. Eng. A. - 2012. - V. 540. - P. 1-12.
Pelton A.R., Russell S.M., DiCello J. // JOM. - 2003. - V. 55. - P. 33-37.
Cao S., Ke C.B, Zhang X.P., Schryvers D. // J. Alloys Compd. - 2013. - V. 577. - P. 215-218.
Karbakhsh Ravari B., Farjami S., Nishida M. //Acta Mater. - 2014. - V. 69. - P. 17-29.
Wang X., Verlinden B., Van Humbeeck J. // Intermetallics. - 2015. - V. 62. P. 43-49.
Yang Z., Tirry W., Schryvers D. // Scr. Mater. - 2005. - V. 52. - P. 1129-1134.