Influence of ultrafine-grained state on evolution of microstructure in different stages of plastic deformation and thermal properties of titanium alloy
The evolution of the microstructure in various stages of plastic deformation under quasi-static tension of titanium specimens in the coarse-grain (CG) and ultrafine-grained (UFG) states, as well as their thermal diffusivity and heat capacity, have been studied. New experimental data have been obtained indicating a significant effect of the UFG structure on the development of plastic deformation and fracture processes and the thermophysical characteristics titanium.
Download file
Counter downloads: 34
Keywords
titanium alloy, ultrafine-grained microstructure, deformation curves, fracture, strain hardening coefficient, thermal diffusivity, heat capacity, thermal diffusivityAuthors
Name | Organization | |
Legostaeva E.V. | Institute of Strength Physics and Materials Science of SB RAS | lego@ispms.tsc.ru |
Eroshenko A.Yu. | Institute of Strength Physics and Materials Science of SB RAS | eroshenko@ispms.tsc.ru |
Glukhov I.A. | Institute of Strength Physics and Materials Science of SB RAS | gia@ispms.tsc.ru |
Sharkeev Yu.P. | Institute of Strength Physics and Materials Science of SB RAS | sharkeev@ispms.tsc.ru |
Belyavskaya O.A. | Institute of Strength Physics and Materials Science of SB RAS | obel@ispms.tsc.ru |
Zhilyakov A.Yu. | Ural Federal University named after the first President of Russia B.N. Yeltsin | a.y.zhilyakov@urfu.ru |
Kuznetsov V.P. | Ural Federal University named after the first President of Russia B.N. Yeltsin | wpkuzn@mail.ru |
References
Valiev R.Z., Zhilyaev A.P., Langdon T.G. Bulk Nanostructured Materials: Fundamentals and Applications. - New Jersey: John Wiley & Sons, 2014. - 456 p.
Зуев Л.Б., Баранникова С.А., Лунев А.Г. От макро к микро. Масштабы пластической деформации. - Новосибирск: Наука, 2018. - 132 с.
Walley S.M. // Metall. Mater. Trans. A. - V. 38A. - P. 2007-2629.
Meyers M.A., Pak H.R. // Acta Metall. - 1986. - V. 34. - No. 12. - P. 2493-2499.
Chichili D.R., Ramesh K.T., Hempker K.J // Acta Metall. - 1998. - V. 46. - No. 3. - P. 1025-1043.
Кардашев Б.К., Нарыкова М.В., Бетехтин В.И. и др. // Физ. мезомех. - 2019. - Т. 22. - № 3. - С. 71-76.
Wang H., Ban C., Zhao N., et al. // Mater. Lett. - 2020. - V. 266. - P. 127485-127488.
Plekhov O.A., Uvarov S.V., Naimark O.B., et al. // Mater. Sci. Eng. A. - 2007. - V. 462. - P. 367-369.
Шаркеев Ю.П., Легостаева Е.В., Вавилов В.П. и др. // Изв. вузов. Физика. - 2019. - Т. 62. - № 8. - С. 39-46.
Sharkeev Yu.P., Legostaeva E.V., Eroshenko A.Yu., et al. // Compos. Interfaces. - 2009. - V. 16. - Р. 535-546.
Parker W.J., Jenkins R.J., Butler C.P., et al. // J. Appl. Phys. - 1961. - V. 32. - No. 9. - P. 1679-1684.
ASTM E1269 (2011) Standard test Method for determining specific heat capacity by differential scanning calorimetry.
Козлов Э.В., Глезер А.М., Конева Н.А. и др. Основы пластической деформации наноструктурных материалов. - М.: Физматлит, 2016. - 304 с.
Poletika T M., Girsova S.L., Pshenichnikov A.P. // Tech. Phys. Lett. - 2010. - V. 36. - No. 4. - P. 308-311.
Панин А.В., Панин В.Е., Почивалов Ю.И. и др. // Физ. мезомех. - 2002. - T. 5. - № 4. - С. 73-84.
Рыбин В.В. Большие пластические деформации и разрушение металлов. - М.: Металлургия, 1986. - 224 с.
Легостаева Е.В., Шаркеев Ю.П., Белявская О.А. и др. // Изв. вузов. Физика. - 2020. - T. 63. - № 11. - С. 28-35.
Gorbatov V.I., Polev V.F., Pilugin V.P., et al. // High Temp. - 2013. - V. 51. - P. 482-485.
Sharkeev Yu.P., Vavilov V.P., Skrypnyak V.A., et al. // Mater. Sci. Eng. A. - 2020. - V. 784. - P. 139203-139221.
