Electronically excited states in model complexes of clusters of precious metals with carbon nanodots
Theoretical calculations of excited states in complexes of gold and silver three-atom nanoclusters with carbon quantum nanodots have been performed using the M062X functional and the def2SVP {H}/def2TZVP/def2TZVPP{Ag, Au} hybrid basis set. The subsequent calculation of the excited states was performed in the approximation of the time-dependent density functional theory implemented in Gaussian09. The chromophore centers of the points were modeled by heterocyclic molecules of isoquino-diazaanthracene and benzopyrano-naphthydrine. The clusters were attached to the points by means of ethyl mercaptan and a methoxyethane bridge of various lengths. Energy transfer channels are considered depending on the mutual arrangement of energy levels of clusters and heterocycles.
Keywords
excitation energy transfer,
metal clusters,
carbon nanodots,
photophysical processesAuthors
Pomogaev V.A. | National Research Tomsk State University; Kyungpook National University | vapom@mail.tsu.ru |
Lee H.J. | Kyungpook National University | hyejinlee@knu.ac.kr |
Goh E. | Kyungpook National University | hyejinlee@knu.ac.kr |
Tchaikovskaya O.N. | National Research Tomsk State University | tchon@phys.tsu.ru |
Kononov A.I. | Saint Petersburg State University | a.kononov@spbu.ru |
Avranov P.V. | Kyungpook National University | paul.veniaminovich@knu.ac.kr |
Всего: 6
References
1. Sciortino A., Cannizzo A., Messina F. // C: J. Carbon Research. - 2018. - V. 4. - No. 4. - P. 1-35.
2. Zhao D., Chen C., Lu L., et al. // Analyst. - 2015. - V. 140. - No. 24. - P. 8157-8164.
3. Hasenöhrl D.H., Saha A., Strauss V., et al. // J. Mater. Chem. B. - 2017. - V. 5. - No. 43. - P. 8591-8599.
4. Yan X., Li Q., Li L. // J. Am. Chem. Soc. - 2012. - V. 134. - No. 39. - P. 16095-16098.
5. Ran X., Sun H., Pu F., et al. // Chem. Commun. - 2013. - V. 49. - No. 11. - P. 1079-1085.
6. Rival J.V., Mymoona P., Lakshmi K.M., et al. // Micro and Nano: Small. 2021. - V. 17. - No. 27. - P. 2005718-2005728.
7. Reveguk Z.V., Pomogaev V.A., Kapitonova M.A., et al. // J. Phys. Chem. C. - 2021. - V. 125. - No. 6. - P. 3542-3552.
8. Buglak A.A., Pomogaev V.A., Kononov A.I. // Int. J. Quantum Chem. - 2019. - V. 119. - No. 20. - P. 25995-26016.
9. Sych T.S., Buglak A.A., Reveguk Z.V., et al. // J. Phys. Chem. C. - 2018. - V. 122. - No. 45. - P. 26275-26280.
10. Sych T.S., Zakhar V., Reveguk Z.R., et al. // J. Phys. Chem. C. - 2018. - V. 122. - P. 29549-29558.
11. Майер Г.В., Плотников В.Г., Артюхов В.Я. // Изв. вузов. Физика. - 2016. - Т. 59. - № 4. - С. 42-53.
12. Помогаев В.А., Артюхов В.Я. // Оптика атмосферы и океана. - 2001. - Т. 14. - № 11. - С. 1033-1037.
13. Помогаев В.А. // Химия высоких энергий. - 2002. - Т. 36. - № 4. - С. 285-289.
14. Артюхов В.Я., Майер Г.В. // Журн. физич. химии. - 2001. - Т. 75. - № 6. - С. 1143-1150.
15. Pomogaev V.A., Ramazanov R.R., Ruud R., Artyukhov V.Ya. // J. Photochem. Photobiol. A: Chemistry. - 2018. - V. 254. - P. 86-100.
16. Su W., Guo R., Yuan F., et al. // J. Phys. Chem. Lett. - 2020. - V. 11. - No. 4. - P. 1357-1363.
17. Chao D., Chen J., Dong Q., et al. // Nano Res. - 2020. - V. 13. - No. 11. - P. 3012-3018.
18. Zhu S., Meng Q., Wang L., et al. // Angew. Chem. Int. Ed. - 2013. - V. 52. - No. 14. - P. 3953-3957.
19. Tian P., Tang L., Teng K.S., Lau S.P. // Mater. Today Chem. - 2018. - V. 10. - P. 221-258.
20. Tang L., Ji R., Li X., et al. // J. Mater. Chem. C. - 2013. - V. 1. - No. 32. - P. 4908-4919.
21. Zhao Y., Truhlar D.G. // Theor. Chem. Account. - 2008. - V. 120. - No. 1-3. - P. 215-241.
22. Eichkorn K., Cannizzo A., Messina F. // Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta). - 1997. - V. 97. - No. 1-4. - P. 119-124.