Control of terahertz polarization-sensitive filters based on the formation by a magnetic field of structures of microparticles of the 5BDSR alloy in a liquid medium
This work presents the results of the development of a version of a polarization-sensitive magnetic-field-controlled bandpass filter in the range from 0.2 to 1.5 THz. The filter is based on a magnetic fluid created by the authors, consisting of 5BDSR alloy microparticles up to 50 microns in size and 5W40 synthetic motor oil for automobiles. It was also shown that by controlling the behavior of microparticles in a magnetic fluid using an external magnetic field, one can create an analogue of diffraction gratings.
Keywords
THz spectroscopy,
agglomerates,
magnetic fluid,
controlled terahertz polarization-sensitive filters,
inductance coilsAuthors
Kochnev Z.S. | National Research Tomsk State University | kochnev_zakhar@mail.ru |
Knyazkova A.I. | National Research Tomsk State University; Institute of Strength Physics and Materials Science of SB RAS | a_knyazkova@bk.ru |
Mashcheryakova T.A. | Tomsk Forestry College | lenina16715@mail.ru |
Raspopin G.R. | National Research Tomsk State University | mitrandire@gmail.com |
Borisov A.V. | National Research Tomsk State University | borisov@phys.tsu.ru |
Всего: 5
References
Dunaevskii G.E., Suslyaev V.I., Zhuravlev V.A., et al. // IRMMH - THz. - 2014. - P. 1-2.
Bychanok D.S., Kanygin M.A., Okotrub A.V., et al. // JETP Lett. - 2011. - V. 93. - P. 607-611.
Chang C., Huang L., Nogan J., Chen H. // APL Photonics 3. - 2018. - P. 051602-1-051602-9.
Liang L.J., Yao J., Yao X. // Chin. Phys. Lett. - 2012. - V. 29. - No. 9. - P. 094209-1-094209-3.
Xiong R., Li J. // J. Infrared, Millimeter, and Terahertz Waves. - 2018. - V. 39. - P. 1039-1046.
Chiang Y., Yang C., Yang Y., et al. // Appl. Phys. Lett. - 2011. - V. 99. - P. 1039-1046.
Winnewisser C., Lewen F., Schall M., et al. // IEEE Trans. Microwave Theory and Tech. - 2000. - V. 48. - P. 744-749.
Kaliteevski S., Brand S., Cook J., et al. // Opt. Express. - 2008. - V. 16. - P. 7330-7335.
Wu D., Fang N., Sun C., et al. // Appl. Phys. Lett. - 2003. - V. 83. - P. 201-203.
Одит М.А., Вендик И.С., Козлов Д.С., Торбенко В.Н. // Сб. тр. Всерос. конф. «Микроэлектроника СВЧ». - 2012. - С. 335-339.
Ezhov D.M., Kochnev Z.S., Fakhrutdinova E.D., et al. // Proc. SPIE. - 2020. - V. 11582. - P. 11582X-1-11582X-6.
Zyatkov D., Balashov V., Yurchenko V., et al. // Prog. Electromagn. Res. M. - 2019. - V. 80. - P. 103-109.
Scherer C., Figueiredo Neto A.M. // Brazilian J. Phys. - 2005. - V. 35. - P. 718-727.
Zyatkov D., Yurchenko A., Yurchenko V., Balashov V. // IOP Conf. Ser.: Materials Science and Engineering. - 2018. - V. 363. - P. 012023-1-012023-6.
Zyatkov D., Yurchenko A., Yurchenko V. // IOP Conf. Ser.: Journal of Physics. - 2017. - V. 881. - P. 012037-1-012037-5.
Stroubel R., Xubo L., Xuefei W., Russel T. // MDPI Mater. - 2020. - V. 13. - No 12. - P. 2712-1-2712-18.
Zyatkov D., Balashov V., Borisov A., et al. // Progress in Electromagnetics Research Symposium (PIERS-Toyama). - 2018. - P. 843-847.
Joseph A., Mathew S. // ChemPlusChem. - 2014. - V. 79. - P. 1382-1420.
Gens S., Derin B. // Current Opinion in Chem. Eng. - 2014. - V. 3. - P. 118-124.
Kaur R., Hasan A., Nusrat I., et al. // J. Separation Sci. - 2014. - V. 37. - P. 1805-1825.
Зятьков Д.О., Кочнев З.С., Князькова А.И., Борисов А.В. // Изв. вузов. Физика. - 2019. - Т. 62. - № 3. - С. 15-20.