Thermophysical and dielectric properties of polymer composites filled with hexagonal boron nitride
Thermophysical and dielectric properties of polymer composites based on linear low density polyethylene (LLDPE) and poly(lactic acid) (PLA) filled with hexagonal boron nitride (hBN) have been studied. It is found that all developed composites possess dielectric properties and enhancement thermal conductivity compared with neat polymer matrices. Unlike carbonaceous fillers (carbon black, graphite, graphene, carbon nanotubes), hBN is a good insulator and therefore is more applicable as a filler for heat-releasing materials with purely white appearance. At the same time, both LLDPE/hBN and PLA/hBN composites at 40 wt% filler content possess comparable thermal conductivity about 0.7 W×m-1×K-1, which is almost 95% and 250% higher than those for the neat LLDPE and PLA, respectively.
Keywords
thermophysical and dielectric properties,
polymer composites,
hexagonal boron nitride,
extrusionAuthors
Lebedev S.M. | National Research Tomsk Polytechnic University | lsm70@mail.ru |
Всего: 1
References
Nakamura A., Iji M. //j. Mater. Sci. - 2009. - V. 44. - P. 4572-4576. - DOI: 10.1007/ s10853-009-3695-1.
Zou J.-F., Yu Z.-Z., Pan Y.-X., et al. //j. Polym. Sci. B: Polym. Phys. - 2002. - V. 40. - P. 954-963. - DOI: 10.1002/ polb.10141.
Debelak B., Lafdi K. // Carbon. - 2007. - V. 45. - P. 1727-1734. - DOI: 10.1016/j.carbon.2007.05.010.
Ye C.-M., Shentu B.-Q., Weng Z.-X. //j. Appl. Polym. Sci. - 2006. - V. 101. - P. 3806-3810. - DOI: 10.1002/app.24044.
Lebedev S.M., Gefle O.S. // Appl. Therm. Eng. - 2015. - V. 91. - P. 875-882. - DOI: 10.1016/j.applthermaleng.2015.08.046.
Lebedev S.M., Gefle O.S., Amitov E.T., et al. // Polym. Test. - 2017. - V. 58. - P. 241-248. - DOI: 10.1016/j.polymertesting.2016.12.033.
Scaffaro R., Botta L., Maio A., Gallo G. // Composites Part B: Engineering. - 2017. - V. 109. - P. 138-146.
Xue B., Ye J., Zhang J. //j. Polym. Res. - 2005. - V. 22. - P. 112. - DOI: 10.1007/s10965-015-0755-x.
Лебедев С.М., Гефле О.С. // Изв. вузов. Физика. - 2017. - Т. 60. - № 1. - С. 98-103.
http://ocsial.com.
Bangarusampath D.S., Ruckdäschel H., Altstädt V., et al. // Polymer. - 2009. - V. 50. - P. 5803-5811.
Mamunya Y., Boudenne A., Lebovka N., et al. // Comp. Sci. Technol. - 2008. - V. 68. - P. 1981-1988.
Xu Y., Ray G., Abdel-Magid B. // Comp. Part A: Appl. Sci. Manufact. - 2006. - V. 37. - P. 114-121.
Kapitza P.L. Collected papers of P.L. Kapitza / ed. D. Ter Haar. - Oxford: Pergamon Press, 1965. - V. 2. - P. 581.
Every A.G., Tzou Y., Hasselman D.P.H., Ray R. // Acta Metall. Mater. - 1992. - V. 40. - P. 123-129.
Dunn M.L., Taya M. //j. Appl. Phys. - 1993. - V. 73. - P. 1711-1722.
Torquato S., Rintoul M.D. // Phys. Rev. Lett. - 1995. - V. 75. - P. 4067-4070.
Nan C.W., Birringer R., Clarke D.R., Gleiter H. //j. Appl. Phys. - 1997. - V. 10. - P. 6692-6699.
Han Z., Fina A. // Prog. Polym. Sci. - 2011. - V. 36. - P. 914-944.
Chantrenne P., Barrat J.-L. // Superlattices Microstruct. - 2004. - V. 35. - P. 173-186.
Nan C.W., Liu G., Lin Y., Li M. // Appl. Phys. Lett. - 2004. - V. 85. - P. 3549-3551.
Gojny F.H., Wichmann M.H.G., Fiedler B., et al. // Polymer. - 2006. - V. 47. - P. 2036-2045.
Shenogin S., Xue L., Ozisik R., et al. //j. Appl. Phys. - 2004. - V. 95. - P. 8136-8144.
Shenogina N., Shenogin S., Xue L., Keblinski P. // Appl. Phys. Lett. - 2005. - V. 87. - 133106/1-3. DOI: 10.1063/ 1.2056591.
Su Z., Wang H., Ye X., et al. // Composites Part A: Appl. Sci. Manufact. - 2018. - V. 109. - P. 402-412.
Yung K.C., Liem H. //j. Appl. Polym. Sci. - 2007. - V. 106. - P. 3587-3591. - DOI: 10.1002/app.27027.
Wang T., Wang M., Fu L., et al. // Sci. Rep. - 2018. - V. 8. - P. 1557. - DOI: 10.1038/ s41598-018-19945-3.
Yang S.-Y., Huang Y.-F., Lei J., et al. // Composites Part A: Appl. Sci. Manufact. - 2018. - V. 107. - P. 135-143.
Zhou T., Smith M.K., Berenguer J.P., et al. //j. Appl. Polym. Sci. - 2020. - V. 137. - P. 48661. - DOI: 10.1002/ app.48661.
Zhou W., Qi S., An Q., et al. // Mater. Res. Bull. - 2007. - V. 42. - P. 1863-1873.
Lebedev S.M. // Polym.Comp. - 2020. - V. 41. - P. 1830-1840. - DOI: 10.1002/pc.25501.
Ghaffari S., Khalid S., Butler M., Naguib H.E. //j. Biobased Mater. Bioenergy. - 2015. - V. 9. - P. 145-154. - DOI: 10.1166/jbmb.2015.1516.
Chandar J.V., Mutharasu D., Mohamed K., et al. // Polymer-Plastics Technol. Mater. - 2020. - V. 59. - DOI: 10.1080/25740881.2020. 1793192.
Glatzmaier G.C., Ramirez W.F. // Rev. Sci. Instrum. - 1985. - V. 56. - P. 1394-1398.
Laturia A., Van de Put M.L., Vandenberghe W.G. // NJP 2D Materials and Applications. - 2018. - V. 2. - P. 1-6. - DOI: 10.1038/s41699-018-0050-x.
Sinclair R.G. //j. Macromol. Sci. Part A: Pure Appl. Chem. - 1996. - V. 33. - P. 585-597.