Effects of low concentration in aqueous solutions within the fractal approach | Izvestiya vuzov. Fizika. 2022. № 2. DOI: 10.17223/00213411/65/2/3

Effects of low concentration in aqueous solutions within the fractal approach

The concept of the fractal approach is discussed in relation to the description of some properties of dilute aqueous solutions and suspensions of low concentrations. The role of weakly interacting objects in the form of van der Waals interactions in the properties of biological objects in the aquatic environment is considered. A model is proposed in which the observed dependences are represented by small differences in the dielectric constant. Biological particles are modeled as water balls with a slightly higher refractive index, moving against a background of clear water. The theory of van der Waals is used to calculate the average relative distance between spheres in the approximation of a small distance and physically reasonable results are found.

Download file
Counter downloads: 74

Keywords

dilute aqueous solutions, van der Waals forces, fractal clusters, fractal dust, fractal kinetics

Authors

NameOrganizationE-mail
Brevik I.Norwegian University of Science and Technology; Tomsk State University of Control Systems and Radio Electronicsiver.h.brevik@ntnu.no
Shapovalov A.V.National Research Tomsk State University; Tomsk State University of Control Systems and Radio Electronicsshpv@phys.tsu.ru
Всего: 2

References

Lyakhov G.A., Shcherbakov I.A. // Phys. Wave Phenomena. - 2019. - V. 27. - No. 2. - P. 79-86.
Shcherbakov I.A. // Phys. Wave Phenomena. - 2020. - V. 28. - No. 2. - P. 83-87.
Иваницкий Г.Р., Деев А.А., Хижняк Е.П. // УФН. - 2014. - Т. 184. - Вып. 1. - С. 43-74.
Shcherbakov I.A. // Phys. Wave Phenomena. - 2021. - V. 29. - No. 2. - P. 89-93.
Gudkov S.V., Lyakhov G.A., Pustovoy V.I., Shcherbakov I.A. // Phys. Wave Phenomena. - 2021. - V. 29. - No. 2. - P. 108-113.
Betti L., Elia V., Napoli E., et al. // Frontiers in Life Science. - 2011. - V. 5. - No. 3-4. - P. 117-126.
Woods K.N. // Sci. Rep. - 2021. - V. 11. - No. 1 - P. 13774. (25 p.)
Tarasov S.A., Gorbunov E.A., Don E.S., et al. //j. Immunol. - 2020. - V. 205. - No. 5. - P. 1345-1354.
Lazzari S., Nicoud L, Jaquet B., et al. // Adv. Colloid Interfac. Sci. - 2016. - V. 235. - P. 1-13.
Mandelbrot B. The Fractal Geometry of Nature. 20th pr. - N.Y., USA: Freeman, 2004.
Falconer K. Fractal Geometry: Mathematical Foundations and Applications. - 2nd ed. - Chichester, UK: Wiley, 2003.
Смирнов Б.М. // УФН. - 1986. - Т. 149. - Вып. 2.- С. 177-219.
Wittenn T.A. (Jr), Sander I.M. // Phys. Rev. Lett. - 1981. - V. 47. - No. 19. - P. 1400-1403.
Meakin P. // Phys. Rev. A. - 1983. - V. 27. - No. 3. - P. 1495-1507.
Meakin P. // Phys. Rev. A. - 1988. - V. 38. - No. 4. - P. 2110-2123.
Kolb M., Jullien R. //j. Phys. Lett. - 1984. - V. 45. - No. 20. - P. 977-981.
Family F., Meakin P., Vicsek T. //j. Chem. Phys. - V. 1985. - V. 83. - No. 8. - P. 4144-4150.
Falconer K.J. // Math. Proc. Camb. Phil. Soc. - 1986. - V. 100. - P. 559-582.
Krapivsky P.L., Ben-Naim E. // Phys. Lett. A. - 1994. - V. 196. - No. 1-2. - P. 168-172.
Trofa M., D'Avino G. // Micromachines. - 2020. - V. 11. - P. 443.
Arinshtein A.E. //j. Exp. Theor. Phys. - 1992. - V. 101. - P. 1209-1212.
Babick F., Schiessl K., Stintz M. // Adv. Powder Technol. - 2011. - V. 22. - P. 220-225.
Geesink H.J.H., Jerman I., Meijer D.K.F. // Water. - 2020. - V. 11. - P. 78.
Burger F.A., Corkery R.W., Buhmann S.Y., Fiedler J. //j. Phys. Chem. C. - 2020. - V. 124. - P. 24179.
Fiedler J., Bostrom M., Persson C., et al. //j. Phys. Chem. B. - 2020. - V. 124. - P. 3103.
Michell D.J., Ninham B.W. //j. Chem. Phys. - 1972. - V. 56. - P. 1117.
Bergström L. // Adv. Colloid Interface Sci. - 1997. - V. 70. - P. 125-169.
Kopelman R. // Science. - 1988. - V. 241. - P. 1620-1626.
Vlada M.O., Corland A.D., Moran F., et al. // PNAS. - 2009. - V. 106. - No. 16. - P. 6465-6470.
Зеленый Л.М., Милованов А.В. // УФН. - 2004. - Т. 47. - Вып. 8. - С. 749-788.
Эпштейн О.И. // УФН. - 2013. - Т. 44. - Вып. 3. - С. 54-76.
Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. - Минск: Наука и техника, 1987.
Parvate A., Satin S., Gangal A.D. // Fractals. - 2011. - V. 19. - P. 15-27.
Potekaev A.I., Glezer A.M., Kulagina V.V., et al. Structure and Properties of Intermetallics in Pre-transitional Low-stability States. - London: CRC Press, Taylor & Francis Group, 2021. - 242 p.
Potekaev A.I., Klopotov A.A., Kulagina V.V., et al. Structure and Properties of TiNi-based Alloys in Pre-transitional Low-stability States. - London: CRC Press, Taylor & Francis Group, 2022. - 250 p.
 Effects of low concentration in aqueous solutions within the fractal approach | Izvestiya vuzov. Fizika. 2022. № 2. DOI: 10.17223/00213411/65/2/3

Effects of low concentration in aqueous solutions within the fractal approach | Izvestiya vuzov. Fizika. 2022. № 2. DOI: 10.17223/00213411/65/2/3