Deformable material as a nonlinear active medium | Izvestiya vuzov. Fizika. 2022. № 2. DOI: 10.17223/00213411/65/2/89

Deformable material as a nonlinear active medium

The regularities of the formation of autowaves of localized plastic flow in metals under Lüders and Portevin-Le Chatelier deformations are considered, taking into account the difference in the microscopic mechanisms of plastic flow for these phenomena. Regularities in the development of these effects are studied. It has been established that the features of deformation characteristic of them are determined by the difference in the properties of the active media formed in the studied materials during plastic deformation. The conditions for generating a switching autowave under Lüders deformation and an excitation autowave under the Portevin-Le Chatelier effect in deformable materials are considered.

Download file
Counter downloads: 33

Keywords

deformable medium, localization, plasticity, dislocations, autowaves

Authors

NameOrganizationE-mail
Zuev L.B.Institute of Strength Physics and Materials Science SB RASlbz@ispms.ru
Danilov V.I.Institute of Strength Physics and Materials Science SB RASdvi@ispms.ru
Danilova L.V.Institute of Strength Physics and Materials Science SB RASdlv@ispms.ru
Gorbatenko V.V.Institute of Strength Physics and Materials Science SB RASgvv@ispms.ru
Всего: 4

References

Хилл Р. Математическая теория пластичности. - М.: ГИТТЛ, 1956. - 407 с.
Hull D., Bacon D.J.Introduction in Dislocations. - Oxford: Elsevier, 2011. - 272 p.
Messerschmidt U. Dislocation Dynamics during Plastic Deformation. - Berlin: Springer, 2010. - 503 p.
Seeger A., Frank W. Non-Linear Phenomena in Material Science / ed. by L.P. Kubin, G. Martin. - N.Y.: Trans. Tech. Publ., 1987. - P. 125-137.
Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. - М.: URSS, 2014. - 317 c.
Николис Г., Пригожин И. Познание сложного. - М.: Мир, 1990. - 342 с.
Зуев Л.Б. Автоволновая пластичность. Локализация и коллективные моды. - М.: Физматлит, 2018. - 207 с.
Зуев Л.Б., Хон Ю.А. // Физич. мезомех. - 2021. - Т. 24. - № 6. - С. 5-14.
Zuev L.B., Barannikova S.A., Danilov V.I., Gorbatenko V.V. // Prog. Phys. Met. - 2021. - V. 22. - No. 1. - P. 3-57. - DOI: 10.15407/ufm.22.01.003.
Davydov V.A., Davydov N.V., Morozov V.G., et al. // Cond. Matter Phys. - 2004. - V. 7. - No. 3. - P. 565-578. - DOI: 10.5488/CMP.7.3.56.
Pelleg J. Mechanical Properties of Materials. - Dordrecht: Springer, 2013. - 634 p.
Shibkov A.A., Gasanov M.F., Zheltov M.A., et al. // Int. J. Plast. - 2016. - V. 86. - No. 8. - P. 37-55. - DOI: 10.1016/j.ijplas.2016.07.014.
Lebyodkin M.A., Zhemchuzhnikova D.A., Lebedkina T.A., Aifantis E.C. // Res. Phys. - 2019. - V. 12. - No. 12. - P. 867-869. - DOI: 10.1016/j.rinp2018.12.067.
Зуев Л.Б., Горбатенко В.В., Данилова Л.В. // Изв. вузов. Физика. - 2021. - Т. 64. - № 9. - С. 75-83.
Danilov V.I., Zuev L.B., Gorbatenko V.V., et al. // Tech. Phys. - 2021. - V. 66. - No. 2. - P. 255-262. - DOI: 10.1134/S106378422020080.
Томас Т. Пластическое течение и разрушение в твердых телах. - М.: Мир, 1964. - 308 с.
Caillard D., Martin J.L. Thermally Activated Mechanisms in Crystal Plasticity. - Oxford: Elsevier, 2003. - 452 p.
Судзуки Т., Ёсинага Х., Такеути С. Динамика дислокаций и пластичность. - М.: Мир, 1989. - 294 с.
Лоскутов А.Ю., Михайлов А.С. Основы теории сложных систем. - М.; Ижевск: НИЦ «Регулярная и хао-тическая динамика», 2007. - 620 с.
 Deformable material as a nonlinear active medium | Izvestiya vuzov. Fizika. 2022. № 2. DOI: 10.17223/00213411/65/2/89

Deformable material as a nonlinear active medium | Izvestiya vuzov. Fizika. 2022. № 2. DOI: 10.17223/00213411/65/2/89