Influence of cyclic freezing on the dynamics of silver nanoclusters on the surface of polypropylene and polyester fibers
A comparative analysis of the sorption of silver nanoparticles on the surface of polypropylene (monophile) and polyester (polyester) fibers after 10-fold cyclic freezing and defrosting, including sequential freezing to -37 ° C and raising the temperature to 0 ° C, has been performed. A significant (more than 8-fold) increase in the number of nanoparticles from 1 to 10 nm in size was revealed, accompanied by a decrease in the amount of silver nanoparticles with a diameter of 10 to 25 nm on the polypropylene surface. At the same time, no similar desorption of silver nanoparticles from the surface of polyester fibers was revealed, which indicates a stronger interaction of medium-sized nanoparticles with polyester fiber as compared to monophile.
Keywords
electron microscopy,
polypropylene,
silver nanoparticles,
cyclic freezingAuthors
Shashkov D.I. | Kuban State University | shinix88@mail.ru |
Kopytov G.F. | Moscow State University of Technology and Management K.G. Razumovsky | g137@mail.ru |
Malyshko V.V. | Southern Scientific Center RAS; Kuban State Medical University | intro-2@rambler.ru |
Lykova A.V. | Kuban State Medical University | kafoph@ksma.ru |
Moiseev A.V. | Kuban State Agrarian University | moiseew_a@rambler.ru |
Demin N.N. | Kuban State Medical University | kafoph@ksma.ru |
Dzhimak S.S. | Kuban State University; Southern Scientific Center RAS | jimack@mail.ru |
Baryshev M.G. | Kuban State University; Southern Scientific Center RAS; Kuban State Technological University | adm@kgtu.kuban.ru |
Всего: 8
References
Потекаев А.И., Лысак И.А., Малиновская Т.Д. и др. // Изв. вузoв. Сер.: Химия и химическая технология. - 2020. - Т. 63. - № 3. - С. 94-99.
Gherasim O., Puiu R.A., Bîrca A.C., et al. // Nanomaterials (Basel). - 2020. - V. 10(11). - P. 2318.
Pryshchepa O., Pomastowski P., Buszewski B. // Adv. Colloid Interface Sci. - 2020. - V. 284. - P. 102246.
Basov A.A., Fedosov S.R., Malyshko V.V., et al. //j. Wound Care. - 2021. - V. 30(4). - P. 312-322.
Popov K.A., Bykov I.M., Tsymbalyuk I.Yu., et al. // Med. News of North Caucasus. - 2018. - V. 13(3). - P. 525-529.
Chen J., Fan L., Yang C., et al. // Int. J. Biol. Macromol. - 2020. - V. 161. - P. 1286-1295.
Oliani W.L., Parra D.F., Komatsu L.G.H., et al. // Mater. Sci. Eng. C: Mater. Biol. Appl. - 2017. - V. 75. - P. 845-853.
Ziąbka M., Dziadek M., et al. // Polymers (Basel). - 2019. - V. 11(12). - P. 2018.
Vishnuvarthanan M., Rajeswari N. //j. Food. Sci. Technol. - 2019. - V. 56(5). - P. 2545-2552.
Cao G., Lin H., Kannan P., et al. // Langmuir. - 2018. - V. 34(48). - P. 14537-14545.
Tan Z., Guo X., Yin Y., et al. // Environ. Sci. Technol. - 2019. - V. 53(23). - P. 13802-13811.
Kumar A., Behl T., Chadha S. // Int. J. Biol. Macromol. - 2020. - V. 149. - P. 1262-1274.
Wang Q., Qian Z., Liu B., et al. //j. Biomater Sci. Polym. Ed. - 2019. - V. 30(6). - P. 462-485.
Dzhimak S.S., Sokolov M.E., Basov A.A., et al. // Nanotechnologies in Russia. - 2016. - V. 11. - P. 835-841.
Джимак С.С., Малышко В.В., Горячко А.И. и др. // Изв. вузов. Физика. - 2019. - Т. 62. - № 2. - С. 114-122.
Ye H., Cheng J., Yu K. // Int. J. Biol. Macromol. - 2019. - V. 121. - P. 633-642.
Han X., He J., Wang Z., et al. // Drug Deliv. - 2021. - V. 28(1). - P. 319-324.
Basu A., Vaskevich A., Chuntonov L. //j. Phys. Chem. B. - 2021. - V. 125(3). - P. 895-906.
Li S., Ma R., Zhu X., et al. // Ecotoxicol. Environ. Saf. - 2021. - V. 210 - P. 111842.
Petriev I., Pushankina P., Lutsenko I., et al. // Nanomaterials. - 2020. - V. 10 (2081). - DOI: 10.3390/ nano10102081.
Fan X., Ma Z., Zou Y., et al. // Environ. Res. - 2021. - V. 195. - P. 110858.