Comparison of robust estimates of modified variants of standard deviation and average absolute deviations | Izvestiya vuzov. Fizika. 2022. № 2. DOI: 10.17223/00213411/65/2/171

Comparison of robust estimates of modified variants of standard deviation and average absolute deviations

We study robust estimates of the scale parameter, which characterizes the “spread” of a random variable. Estimates are proposed that are asymptotically normally distributed, have limited influence functions and, therefore, in contrast to the standard deviation estimate, are “protected” from the presence of outliers in the sample. Estimates are calculated on the basis of ordered statistics, from which part of the observations is preliminarily removed. An adaptive version of estimates based on the use of sample estimates of functionals characterizing the degree of "tail-length" distributions is proposed. The results of comparing the estimates of the scale parameter under the conditions of various observation models are presented. In particular, a Gaussian model with large-scale contamination is used to describe the presence of outliers in the sample.

Download file
Counter downloads: 54

Keywords

scale parameter, robust estimates, outliers, influence function, adaptive estimates

Authors

NameOrganizationE-mail
Shulenin V.P.National Research Tomsk State University
Всего: 1

References

Шуленин В.П. Робастные методы математической статистики. - Томск: Изд-во НТЛ, 2016. - 260 с.
Хампель Ф., Рончетти Э., Рауссей П., Штаэль В. Робастность в статистике. Подход на основе функций влияния. - М.: Мир, 1989. - 512 с.
Хьюбер П. Робастность в статистке. - М.: Мир, 1984. - 304 с.
Хеттсманспергер Т. Статистические выводы, основанные на рангах. - М.: Финансы и статистика, 1987. - 334 с.
Шуленин В.П. // Изв. вузов. Физика. - 2016. - Т. 59. - № 6. - С. 62-69.
Jureckova J. M-L-R-estimators. Handbook of Statistics. V. 4 / eds. P.R. Krishnaiah, P.K. Sen. - Elsevier Science Publishers, 1984. - P. 463-485.
Andrews D.F., Bickel P.J., Hampel F.R., et al. Robust Estimation of Location: Survey and Advances. - Princeton, N.Y.: Princeton Univ. Press, 1972. - 375 p.
Hampel F.R. //j. Amer. Statist. Assoc. - 1974. - V. 69. - No. 346. - P. 383-393.
Bickel P.J., Lehmann E.L. // Ann. Statist. - 1976. - V. 4. - No. 6. - P. 1139-1158.
Janssen P., Serfling R., Veraverbeke M. // Ann. Statist. - 1984. - V. 12. - No. 4. - P. 1369-1379.
Шуленин В.П. // Изв. вузов. Физика. - 2020. - Т. 63. - № 12. - С. 124-137.
Serfling R.J. Approximation Theorems of Mathematical Statistics. - N.Y.: Wiley, 1980. - 371 p.
Шуленин В.П. // Изв. вузов. Физика. - 2020. - Т. 63. - № 4. - С. 40-54.
Hogg R.V. //j. Amer. Statist. Assoc. - 1974. - V. 69. - P. 909-923.
 Comparison of robust estimates of modified variants of standard deviation and average absolute deviations | Izvestiya vuzov. Fizika. 2022. № 2. DOI: 10.17223/00213411/65/2/171

Comparison of robust estimates of modified variants of standard deviation and average absolute deviations | Izvestiya vuzov. Fizika. 2022. № 2. DOI: 10.17223/00213411/65/2/171