About the nonlinearity of the problem of estimating the parameters of asteroids with small perihelion distances | Izvestiya vuzov. Fizika. 2022. № 3. DOI: 10.17223/00213411/65/3/72

About the nonlinearity of the problem of estimating the parameters of asteroids with small perihelion distances

The paper presents the results of determining the nonlinearity degree of the problem of estimating the initial orbital parameters of asteroids with small perihelion distances. The values of the nonlinearity index χ were obtained for 53 asteroids known as of September 2021. It allowed to evaluate the nonlinearity as weak, medium or strong. The calculation of the parameter is based on the computation and comparison of the objective function values of the least squares problem (LS) at the vertexes of the confidence ellipsoid. The study showed that for most asteroids (46 objects) the nonlinearity is weak, for six it is moderate, and for one object the nonlinearity is defined as strong. If the nonlinearity is moderate or strong, it is recommended to use non-linear methods for constructing the initial region to obtain the most adequate prediction of the asteroids motion. For asteroids with different nonlinearity degrees, the initial probabilistic regions are constructed using the linear method and the method of perturbed observations. For four asteroids, the evolution of the linear and nonlinear initial regions was traced, and a comparative analysis of their behavior with time was carried out.

Download file
Counter downloads: 31

Keywords

nonlinearity estimation, asteroids with small perihelion distances, probabilistic evolution

Authors

NameOrganizationE-mail
Letner O.N.National Research Tomsk State Universityoksana.letner@gmail.com
Galushina T.Yu.National Research Tomsk State Universitytanastra@nxt.ru
Gurianov S.A.National Research Tomsk State University; Russian MIA Administration for the Tomsk Regionmagicboys2000@gmail.com
Всего: 3

References

Сюсина О.М., Черницов А.М., Тамаров В.А. // Астрон. вестник. - 2012. - Т. 46. - № 3. - С. 209-222.
Авдюшев В.А. Численное моделирование орбит небесных тел. - Томск: Издательский Дом Томского государственного университета, 2015. - 336 c.
Сюсина О.М., Черницов А.М., Тамаров В.А. // Изв. вузов. Физика. - 2013. - Т. 56. - № 6/3. - С. 232-234.
Черницов А.М., Батурин А.П., Тамаров В.А. // Астрон. вестник. - 1998. - Т. 32. - № 5. - С. 459-467.
Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Основы моделирования и первичная обработка данных: справочное изд. - М.: Финансы и статистика, 1983. - 471 с.
Everhart E. // Proc. 83rd IAU Colloq. / eds. A. Carusi and G.B. Valsecchi. - Dordrecht, 1985. - P. 185-202.
Galushina T., Bykova L., Letner O., Baturin A. // Astron.Comput. - 2019. - V. 29. - id. 100301.
Galushina T.Yu., Letner O.N. // Astronom. Astrophys. Trans. - 2021. - V. 32. - No. 4.
 About the nonlinearity of the problem of estimating the parameters of asteroids with small perihelion distances | Izvestiya vuzov. Fizika. 2022. № 3. DOI: 10.17223/00213411/65/3/72

About the nonlinearity of the problem of estimating the parameters of asteroids with small perihelion distances | Izvestiya vuzov. Fizika. 2022. № 3. DOI: 10.17223/00213411/65/3/72