Fine structure of rails after ultra long-term operation | Izvestiya vuzov. Fizika. 2022. № 3. DOI: 10.17223/00213411/65/3/160

Fine structure of rails after ultra long-term operation

Using the methods of transmission electron diffraction microscopy the structure phase state and defect substructure in head of differentially quenched 100-meter rails at different depth after ultra long-term operation (passed gross tonnage 1770 mln. tons) are studied. The investigations are carried out along the rail head central axis of symmetry and working fillet rounding radius at the distances 0, 2, 10 mm from the tread surface. Dislocation ferrite substructure is presented by chaotically distributed dislocations and nets. The scalar and excess dislocation density increase as they approach the head rail surface. The values of these parameters on the surface are more than twice the corresponding value at a depth of 10 mm. The value of excess dislocation density is lower than scalar dislocation density which indicates elastic character of crystal lattice curvature-torsion. The quantitative evaluation of mechanisms dislocation strengthening is carried out.

Download file
Counter downloads: 24

Keywords

fine structure, rails, operation, dislocations, strengthening mechanisms

Authors

NameOrganizationE-mail
Ivanov Yu.F.Institute of High Current Electronics SB RASyufi55@mail.ru
Gromov V.E.Siberian State Industrial Universitygromov@physics.sibsiu.ru
Kuznetsov R.V.Siberian State Industrial Universitymail@kuzmash.com
Shliarova Yu.A.Siberian State Industrial Universityrubannikova96@mail.ru
Yuriev A.A.JSC «Evraz - West-Siberian Metallurgical Works»ant-yurev@yandex.ru
Kormyshev V.E.Siberian State Industrial University89239230000@mail.ru
Всего: 6

References

Yuriev A.A., Gromov V.E., Ivanov Yu.F., et al. Structure and Properties of Lengthy Rails after Extreme Long-Term Operation. - Materials Research Forum LLC, 2021. - 193 p.
Ivanisenko Yu., Fecht H.J. // Steel Tech. - 2008. - V. 3(1). - P. 19-23.
Wild E., Wang L., Hasse B., et al. // Wear. - 2003. - V. 254. - P. 876-883.
Zhang H.W., Ohsaki S., Mitao S., et al. // Mater. Sci. Eng. A. - 2006. - V. 421. - P. 191-199.
Lojkowski W., Djahanbakhsh M., Bürkle G., et al. // Mater. Sci. Eng. A. - 2001. - V. 303. - P. 197-208.
Ishida M. //j. Struct. Eng. - 2013. - V. 13. - P. 67-74.
Steenbergen M., Dollevoet R. // Int. J. Fatigue. - 2013. - V. 47. - P. 361-372.
Pal S., Valente C., Daniel W., Farjoo M. // Wear. - 2012. - V. 284. - P. 30-42.
Clayton P. // Wear. - 1995. - V. 191. - P. 170-183.
Panin V.E., Gromov V.E., Ivanov Yu.F., et al. // Doklady Physics. - 2020. - V. 65. - P. 376-378.
Gromov V.E., Ivanov Yu.F., Kormyshev V.E., et al. // Prog. Phys. Metals. - 2020. - V. 21(4). - P. 527-553.
Egerton F.R. Physical Principles of Electron Microscopy. - Basel: Springer International Publishing, 2016. - 196 р.
Kumar C.S.S.R. Transmission Electron Microscopy. Characterization of Nanomaterials. - N.Y.: Springer, 2014. - 717 р.
Carter C.B., Williams D.B. Transmission Electron Microscopy. - Berlin: Springer International Publishing, 2016. - 518 р.
 Fine structure of rails after ultra long-term operation | Izvestiya vuzov. Fizika. 2022. № 3. DOI: 10.17223/00213411/65/3/160

Fine structure of rails after ultra long-term operation | Izvestiya vuzov. Fizika. 2022. № 3. DOI: 10.17223/00213411/65/3/160