Pattern formation in a nonlocal Fisher - Kolmogorov - Petrovskii - Piskunov model and in a nonlocal kinetic model of the metal vapor active medium | Izvestiya vuzov. Fizika. 2022. № 4. DOI: 10.17223/00213411/65/4/99

Pattern formation in a nonlocal Fisher - Kolmogorov - Petrovskii - Piskunov model and in a nonlocal kinetic model of the metal vapor active medium

Nonlocal versions of the reaction-diffusion type population equations can describe the evolution of spatio-temporal structures (patterns) depending on the equation parameter domain. Under conditions of weak diffusion, numerical methods were used to compare the processes of spatio-temporal pattern formation in a nonlocal population model described by the generalized one-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation with nonlocal competitive losses, and in a two-dimensional nonlocal version of the kinetic model of a quasineutral plasma of metal vapor active media described by the kinetic equation with nonlocal cubic nonlinearity. The effect of relaxation on the pattern formation is studied.

Download file
Counter downloads: 25

Keywords

numerical solutions, formation of structures, nonlocal kinetic equation, active optical medium, nonlocal generalized Fisher - Kolmogorov - Petrovsky - Piskunov equation

Authors

NameOrganizationE-mail
Shapovalov A.V.National Research Tomsk State University; Tomsk State University of Control Systems and Radio Electronicsshpv@phys.tsu.ru
Kulagin A.E.National Research Tomsk Polytechnic University; V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciencesaek8@tpu.ru
Siniukov S.A.National Research Tomsk State Universityssaykmh@yandex.ru
Всего: 3

References

Torgaev S.N., Kulagin A.E., Evtushenko T.G., Evtushenko G.S. // Opt.Commun. - 2019. - V. 440. - P. 146-149.
Борисов А.В., Резаев Р.О., Трифонов А.Ю., Шаповалов А.В. // Известия Томского политехнического университета. - 2009. - Т. 315. - № 2. - С. 24-28.
Shapovalov A.V., Trifonov A.Yu. // Int. J. Geometric Methods Mod. Phys. - 2018. - V. 15. - Art. ID: 1850102. - 30 p.
Kulagin A.E., Shapovalov A.V. // Mathematics. - 2021. - V. 9. - No. 23. - Art. ID: 2995. - 16 p.
Levchenko E.A., Shapovalov A.V., Trifonov A.Yu. //j. Phys. A: Math. Theor. - 2016 - V. 49. - Art. ID: 305203. - 17 p.
Levchenko E.A., Shapovalov A.V., Trifonov A.Yu. //j. Phys. A: Math. Theor. - 2014. - V. 47. - Art. ID: 025209. - 20 p.
Трифонов А.Ю., Шаповалов А.В. // Изв. вузов. Физика. - 2009. - Т. 52. - № 9. - С. 14-23.
Genieys S., Volpert V., Auge P. // Math. Modelling of Natural Phenomena. - 2006. - V. 1. - No. 1. - P. 65-82.
Maruvka Y.E., Shnerb N.M. // Phys. Rev. E. - 2006. - V. 73. - Art. ID: 011903.
Fuentes M.A., Kuperman M.N., Kenkre V.M. // Phys. Rev. Lett. - 2003. - V. 91. - P. 158104-1-158104-4.
Ванаг В.К. // УФН. - 2004. - Т. 174. - Вып. 9. - С. 991-1010.
Nicolis G., Prigogine I. Self-Organization in Nonequilibrium Systems: - N.Y.: Wiley, 1977.
Иваницкий Г.Р., Медвинский А.Б., Цыганов М.А. // УФН. - 1994. - Т. 164. - Вып. 10. - С. 1041-1072.
Ванаг В.К. Диссипативные структуры в реакционно-диффузионных системах. Эксперимент и теория. - М.: Изд-во «ИКИ», 2008.
Питаевский Л.П., Лившиц Е.М. Теоретическая физика: в 10 т. Физическая кинетика. - М.: Физматлит, 2007.
Murray J.D. Mathematical Biology. I. An Introduction (Third Edition). - New York; Berlin; Heidelberg: Springer Verlag, 2001.
 Pattern formation in a nonlocal Fisher - Kolmogorov - Petrovskii - Piskunov model and in a nonlocal kinetic model of the metal vapor active medium | Izvestiya vuzov. Fizika. 2022. № 4. DOI: 10.17223/00213411/65/4/99

Pattern formation in a nonlocal Fisher - Kolmogorov - Petrovskii - Piskunov model and in a nonlocal kinetic model of the metal vapor active medium | Izvestiya vuzov. Fizika. 2022. № 4. DOI: 10.17223/00213411/65/4/99