Pattern formation in a nonlocal Fisher - Kolmogorov - Petrovskii - Piskunov model and in a nonlocal kinetic model of the metal vapor active medium
Nonlocal versions of the reaction-diffusion type population equations can describe the evolution of spatio-temporal structures (patterns) depending on the equation parameter domain. Under conditions of weak diffusion, numerical methods were used to compare the processes of spatio-temporal pattern formation in a nonlocal population model described by the generalized one-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation with nonlocal competitive losses, and in a two-dimensional nonlocal version of the kinetic model of a quasineutral plasma of metal vapor active media described by the kinetic equation with nonlocal cubic nonlinearity. The effect of relaxation on the pattern formation is studied.
Keywords
numerical solutions,
formation of structures,
nonlocal kinetic equation,
active optical medium,
nonlocal generalized Fisher - Kolmogorov - Petrovsky - Piskunov equationAuthors
Shapovalov A.V. | National Research Tomsk State University; Tomsk State University of Control Systems and Radio Electronics | shpv@phys.tsu.ru |
Kulagin A.E. | National Research Tomsk Polytechnic University; V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences | aek8@tpu.ru |
Siniukov S.A. | National Research Tomsk State University | ssaykmh@yandex.ru |
Всего: 3
References
Torgaev S.N., Kulagin A.E., Evtushenko T.G., Evtushenko G.S. // Opt.Commun. - 2019. - V. 440. - P. 146-149.
Борисов А.В., Резаев Р.О., Трифонов А.Ю., Шаповалов А.В. // Известия Томского политехнического университета. - 2009. - Т. 315. - № 2. - С. 24-28.
Shapovalov A.V., Trifonov A.Yu. // Int. J. Geometric Methods Mod. Phys. - 2018. - V. 15. - Art. ID: 1850102. - 30 p.
Kulagin A.E., Shapovalov A.V. // Mathematics. - 2021. - V. 9. - No. 23. - Art. ID: 2995. - 16 p.
Levchenko E.A., Shapovalov A.V., Trifonov A.Yu. //j. Phys. A: Math. Theor. - 2016 - V. 49. - Art. ID: 305203. - 17 p.
Levchenko E.A., Shapovalov A.V., Trifonov A.Yu. //j. Phys. A: Math. Theor. - 2014. - V. 47. - Art. ID: 025209. - 20 p.
Трифонов А.Ю., Шаповалов А.В. // Изв. вузов. Физика. - 2009. - Т. 52. - № 9. - С. 14-23.
Genieys S., Volpert V., Auge P. // Math. Modelling of Natural Phenomena. - 2006. - V. 1. - No. 1. - P. 65-82.
Maruvka Y.E., Shnerb N.M. // Phys. Rev. E. - 2006. - V. 73. - Art. ID: 011903.
Fuentes M.A., Kuperman M.N., Kenkre V.M. // Phys. Rev. Lett. - 2003. - V. 91. - P. 158104-1-158104-4.
Ванаг В.К. // УФН. - 2004. - Т. 174. - Вып. 9. - С. 991-1010.
Nicolis G., Prigogine I. Self-Organization in Nonequilibrium Systems: - N.Y.: Wiley, 1977.
Иваницкий Г.Р., Медвинский А.Б., Цыганов М.А. // УФН. - 1994. - Т. 164. - Вып. 10. - С. 1041-1072.
Ванаг В.К. Диссипативные структуры в реакционно-диффузионных системах. Эксперимент и теория. - М.: Изд-во «ИКИ», 2008.
Питаевский Л.П., Лившиц Е.М. Теоретическая физика: в 10 т. Физическая кинетика. - М.: Физматлит, 2007.
Murray J.D. Mathematical Biology. I. An Introduction (Third Edition). - New York; Berlin; Heidelberg: Springer Verlag, 2001.