On dependencies of the mechanical properties of bone cement on porosity | Izvestiya vuzov. Fizika. 2022. № 6. DOI: 10.17223/00213411/65/6/83

On dependencies of the mechanical properties of bone cement on porosity

A significant part of hip and knee arthroplasty operations is carried out using cement technology. This determines the relevance of the biomechanical compatibility of bone cement, which is a porous material and is filled with biological fluid after surgery. A computer model of the mechanical behavior of porous bone cement has been developed with explicit and implicit consideration of pores of various scales, where "isolated" macropores are explicitly taken into account. The study was carried out on the basis of multiscale computer simulation using the method of movable cellular automata. The mechanical behavior of model samples, both dry and containing biological fluid, was studied under uniaxial compression and four-point bending. Nonlinear features have been revealed in dependence on the porosity of elastic and strength properties of bone cement during compression.

Download file
Counter downloads: 26

Keywords

Bone cement, Porosity, Elastic modulus, Strength, Numerical simulation

Authors

NameOrganizationE-mail
Smolin A.Yu.Institute of Strength Physics and Materials Science of SB RASasmolin@ispms.ru
Eremina G.M.Institute of Strength Physics and Materials Science of SB RASanikeeva@ispms.ru
Martyshina I.P.Institute of Strength Physics and Materials Science of SB RASmira@ispms.ru
Всего: 3

References

Храмов А.Э., Макаров М.А., Макаров С.А. и др. // Научно-практическая ревматология. - 2017. - Т. 55(5). - С. 549-554. - DOI: 10.14412/1995-4484-2017-549-554.
Whitehouse M.R., Atwal N.S., Pabbruwe M., et al. // Eur. Cell. Mater. - 2014. - V. 27. - P. 50-62. - DOI: 10.22203/ecm.v027a05
Sas A., Helgason B., Ferguson S.J., van Lenthe G.H. //j. Mech. Behav. Biomed. Mater. - 2021. - V. 115. - P. 104247. - DOI: 10.1016/j.jmbbm.2020.104247.
Shirazi H.A., Asnafi A., Navidbakhs H.M., et al. // Mater. Res. Express. - 2020. - V. 6. - P. 125422. - DOI: 10.1088/2053-1591/ab66f5.
Slane J., Vivanco J., Ebenstein D., et al. //j. Mech. Behav. Biomed. Mater. - 2014. - V. 37. - P. 141-152. - DOI: 10.1016/j.jmbbm.2014.05.015.
Lambrescu I., Teodoriu C., Amani M. // Materials. - 2021. - V. 14. - No. 23. - P. 7235. - DOI: 10.3390/ma14237235.
Cimatti B., Santos M.A., Dos Brassesco M.S., et al. //j. Biomed. Mater. Res. - 2017. - V. 106(2). - P. 649-658. - DOI: 10.1002/jbm.b.33870.
Cavalu S. // KEM. - 2017. - V. 745. - P. 39-49. - DOI: 10.4028/www.scientific.net/KEM.745.39.
Asgharzadeh Shirazi H., Ayatollahi M.R., Navidbakhsh M., Asnafi A. // Nanomaterials for Advanced Biological Applications. Advanced Structured Materials / eds. M. Rahmandoust, M. Ayatollahi. - Cham: Springer, 2019. - V. 104. - P. 209-224. - DOI: 10.1007/978-3-030-10834-2_8.
Messick K.J., Miller M.A., Damron L.A., et al. //j. Bone Joint Surg. Br. - 2007. - V. 89-B. - No. 8. - P. 1115-1121. - DOI: 10.1302/0301-620X.89B8.19129.
Machrowska A., Szabelski J., Karpiński R., et al. // Materials. - 2020. - V. 13. - P. 5419. - DOI: 10.3390/ma13235419.
Whitehouse M.R., Atwal N.S., Pabbruwe M., et al. // Eur. Cells Mater. - 2014. - V. 27. - P. 50-62. - DOI: 10.22203/ecm.v027a05.
Smolin A.Yu., Shilko E.V., Astafurov S.V., et al. // Defence Technology. - 2018. - V. 14. - P. 643-656. - DOI: 10.1016/j.dt.2018.09.003.
Shilko E.V., Grigoriev A.S., Smolin A.Yu. // Facta Universitatis Series: Mechanical Engineering. - 2021. - V. 19. - P. 7-22. - DOI: 10.22190/FUME201221012S.
Grigoriev A.S., Zabolotskiy A.V., Shilko E.V., et al. // Materials. - 2021. - V. 14. - P. 7376. - DOI: 10.3390/ma14237376.
Смолин А.Ю., Еремина Г.М., Коростелев С.Ю. // Изв. вузов. Физика. - 2019. - Т. 62. - № 8. - С. 128-136. - DOI: 10.17223/00213411/62/8/128.
Psakhie S.G., Dimaki A.V., Shilko E.V., Astafurov S.V. // Int. J. Numer. Methods Eng. - 2016. - V. 106. - P. 623-643. - DOI: 10.1002/nme.5134
Eremina G., Smolin A. // Materials. - 2021 - V. 14 - No. 24. - P. 7678. - DOI: 10.3390/ma14247678.
Eremina G., Smolin A. // Procedia Struct.Integr. - 2022 - V. 35. - P.115-123. - DOI: 10.1016/j.prostr.2021.12.055.
Dunne N. // Woodhead Publishing Series in Biomaterials, Orthopaedic Bone Cements / ed. Sanjukta Deb. - Woodhead Publishing, 2008. - P. 233-264. - DOI: 10.1533/9781845695170.3.233.
Jones A.C., Wilcox R.K. // Med. Eng. Phys. - 2008. - V. 30. - No. 10. - P. 1287-304. - DOI: 10.1016/j.medengphy.2008.09.006
Khellafi H., Bouziane M.M., Djebli A., et al. // JBBBE. - 2019. - V. 41. - P. 37-48. - DOI: 10.4028/www.scientific.net/JBBBE.41.37.
Qu G.X., Ying Z.M., Zhao C.C., et al. // Int. J. Med. Sci. - 2018. - V. 15. - No. 13. - P. 1458-1465. - DOI: 10.7150/ijms.27759.
 On dependencies of the mechanical properties of bone cement on porosity | Izvestiya vuzov. Fizika. 2022. № 6. DOI: 10.17223/00213411/65/6/83

On dependencies of the mechanical properties of bone cement on porosity | Izvestiya vuzov. Fizika. 2022. № 6. DOI: 10.17223/00213411/65/6/83