The martensite-austenite constituent formation in X65 low-carbon steel under thermomechanical treatment and welding
The features of the martensite-austenite (M-A) constituent formation in the structures of X65 steel after helical rolling and laser welding were studied using transmission electron microscopy. Four main types of M-A constituent have been identified in the structures. After thermomechanical treatment under conditions of low cooling rates, the island type M-A constituent with a complex internal multiphase structure (types I and III) or a structure consisting entirely of twinned martensite (type II) is formed in X65 steel. The type of M-A constituent will change after laser welding. Instead of island multiphase areas of the M-A constituent, dispersed elongated sections are formed in the heat-affected zones (HAZ), consisting of residual austenite (type IV) or twinned martensite. The appearance of satellite spots in microdiffraction patterns taken from the M-A constituent areas in the HAZ of the welded joint was detected. It has been suggested that their formation is associated with local supersaturation of carbon in the M-A constituent and its inhomogeneous distribution due to the restriction of diffusion processes during accelerated cooling after laser welding.
Keywords
low carbon steel,
thermomechanical treatment,
laser welding,
microstructure,
martensite-austenite constituent,
residual austenite,
satellite spotsAuthors
Gordienko A.I. | Institute of Strength Physics and Materials Science of SB RAS | mirantil@sibmail.com |
Volochaev M.N. | Institute of Strength Physics and Materials Science of SB RAS | volochaev@iph.krasn.ru |
Malikov A.G. | Institute of Strength Physics and Materials Science of SB RAS | smalik@ngs.ru |
Panyukhina A.D. | Institute of Strength Physics and Materials Science of SB RAS | ovchinnikova-albina@mail.ru |
Всего: 4
References
Zajac S., Schwinn V., Tacke K.-H. // Mater. Sci. Forum. - 2005. - V. 500-501. - P. 387-394.
Thewlis G. // Mater. Sci. Technol. - 2004. - V. 20. - P. 143-160.
Smirnov M., Pyshmintsev I., Boryakova A.N. // Metallurgist. - 2010. - V. 54. - No. 7-8.
Матросов М.Ю., Лясоцкий И.В., Кичкина А.А. и др. // Сталь. - 2012. - № 1. - С. 65-74.
Власов И.В., Панин С.В., Сурикова Н.С. и др. // Изв. вузов. Физика. - 2020. - Т. 63. - № 7. - С. 59-65.
Kichkina A.A., Matrosov M.Y., Lyasotskii I.V., et al. // Metallurgist. - 2018. - V. 62. - No. 7-8. - P. 772-782.
Kruglova A.A., Orlov V.V., Khlusova E.I. // Met. Sci. Heat Treat. - 2007. - V. 47. - No. 11-12. - P. 556-560.
Hernandez-Duran E.I., Ros-Yanez T., Castro-Cerda F.M, et al. // Mater. Sci. Eng. A. - 2020. - V. 797. - P. 140061.
Huda N., Midawi A.R.H., Gianetto J., et al. // Mater. Sci. Eng. A. - 2016. - V. 662. - P. 481-491.
Xiang L., Xiaohua C., Wang T., et al. // Mater. Sci. Eng. A. - 2018. - V. 710. - P. 192-199.
Ramachandra D.C., Kim S.-D., Moon J., et al. // Mater. Lett. - 2020. - V. 278. - P. 128422.
Lambert A., Drillet J., Gourgues A.F., et al. // Sci. Technol. Weld. Join. - 2000. - V. 5. - P. 168-173.
Derevyagina L.S., Gordienko A.I., Surikova N.S., Volochaev M.N. // Mater. Sci. Eng. A. - 2021. - V. 816. - P. 141275.
Panin V.E., Shulepov I.A., Derevyagina L.S., et al. // Phys. Mesomech. - 2020. - V. 23. - No. 5. - P. 376-383.
Gordienko A.I., Derevyagina L.S., Malikov A.G., et al. // Mater. Sci. Eng. A. - 2020. - V. 797. - P. 140075.
Lan L.Y., Qiu C.L., Zhao D.W., et al. // Mater. Sci. - 2012. - V. 47. - P. 4732-4742.
Bonnevie E., Ferriere G., Ikhlef A., et al. // Mater. Sci. Eng. A. - 2014. - V. 385 - P. 352-358.
Mohammadijoo M., Valloton J., Collins L., et al. // Mater. Charact. - 2018. - V. 142. - P. 321-331.
Утевский Л.М. Дифракционная электронная микроскопия в металловедении. - М.: Металлургия, 1973. - 584 с.
Kusunoki M., Nagakura S. //j. Appl. Crystallogr. - 1981. - V. 14. - P. 329-336.
Nagakura S., Hirotsu Y., Kusunoki M., et al. // Metall. Trans. A. - 1983. - V. 14. - P. 1025-1031.
Hofer C., Bliznuk V., Verdiere A., et al. // Mater. Charact. - 2018. - V. 144. - P. 182-190.