The effect of a spherical nanoparticle with a metal shell on the deactivation of the excited quantum dot
The plasmon-exciton interaction between a spherical nanoparticle with a dielectric core and a metal shell and a quantum dot in the mode of strong or weak confinement has been theoretically investigated. The rate of nonradiative transfer of electron excitation energy from a quantum dot to a nanoparticle and the rate of spontaneous emission of a quantum dot in the presence of a nanoparticle are calculated. It is shown that at the radii of the nanoparticle core, for which the frequency of the plasmon oscillation coincides with the frequency of the electronic transition in the quantum dot, the rates of radiative and nonradiative processes increase sharply. The kinetics of energy exchange between a nanoparticle and a quantum dot has been studied, and the values of the parameters of the system under consideration, at which the kinetics has the character of damped oscillations, have been established.
Keywords
layered plasmonic nanoparticle,
localized plasmon,
spherical quantum dot,
plasmon-exciton interaction,
Rabi splittingAuthors
Chmereva T.M. | Orenburg State University | chmereva@yandex.ru |
Kucherenko M.G. | Orenburg State University | clibph@yandex.ru |
Mushin F.Y. | Orenburg State University | fedor.mushin@yandex.ru |
Всего: 3
References
Govorov A.O., Lee J., Kotov N.A. // Phys. Rev. B. - 2007. - V. 76. - P. 125308. - DOI: 10.1103/PhysRevB.76.125308.
Pustovit V.N., Shahbazyan T.V. //j. Chem. Phys. - 2012. - V. 136. - P. 204701. - DOI: 10.1063/1.4721388.
Kamalieva A.N., Toropov N.A., Bogdanov K.V., Vartanyan T.A. // Opt. Spectrosc. - 2018. - V. 124. - No. 3. - P. 319-322. - DOI: 10.1134/S0030400X18030153.
Kucherenko M.G., Chmereva T.M., Gadaeva E.K. //j. Appl. Spectrosc. - 2014. - V. 81. - P. 416-421. - DOI: 10.1007/S10812-014-9947-0.
Kucherenko M.G., Kislov D.A., Chmereva T.M. // Nanotechnologies in Russia. - 2012. - V. 7. - No 3-4. - P. 196-204. - DOI: 10.1134/S1995078012020115.
Huang Q., Chen J., Zhao J., et al. // Nanoscale Res. Lett. - 2015. - V. 10. - P. 400. - DOI: 10.1186/s11671-015-1067-0.
Matyushkin L.B., Pertsova A., Moshnikov V.A. // Tech. Phys. Lett. - 2018. - V. 44. - No. 4. - P. 331-333. - DOI: 10.1134/S1063785018040211.
Kucherenko M.G., Nalbandyan V.M. // Opt. Spectrosc. - 2020. - V. 128. - No. 11. - P. 1910-1917. - DOI: 10.1134/S0030400X20110156.
Vlack C.V., Kristensen P.T., Hughes S. // Phys. Rev. B. - 2012. - V. 85. - P. 075303. - DOI: 10.1103/PhysRevB.85.075303.
Artuso R.D., Bryant G.W. // Nano Lett. - 2008. - V. 8. - No. 7. - P. 2106-2111. - DOI: 10.1021/nl800921z.
Sadeghi S.M., Patty K.D. //j. Opt. Soc. Am. B. - 2014. - V. 31. - No. 1. - P. 120-127. - DOI: https://www.osapublishing.org/josab/abstract.cfm?URI = josab-31-1-120.
Leng H., Szychowski B., Daniel M.-C., Pelton M. // Nature Commun. - 2018. - V. 9. - P. 4012. - DOI: 10.1038/s41467-018-06450-4.
Агранович В.М., Галанин М.Д. Перенос энергии электронного возбуждения в конденсированных средах. - М.: Наука, 1978. - 384 с.
Kucherenko M.G., Chmereva T.M. // Opt. Spectrosc. - 2018. - V. 125. - No. 2. - P. 173-183. - DOI: 10.1134/S0030400X18080179.
Климов В.В. Наноплазмоника. - М.: Физматлит, 2009. - 480 с.
Дорофеенко А.В., Зябловский А.А., Лисянский А.А., Пухов А.А. Квантовая наноплазмоника. - Долгопрудный: Изд. дом «Интеллект», 2015. - 368 с.
Goliney I.Yu., Sugakov V.I., Valkunas L., Vertsimakha G.V. // Chem. Phys. - 2012. - V. 404. - P. 116-122. - DOI: 10.1016/j.chemphys.2012.03.011.
Sugakov V.I., Vertsimakha G.V. // Phys. Rev. B. - 2010. - V. 81. - P. 235308. - DOI: 10.1103/PhysRevB.81.235308.
Федоров А.В., Рухленко И.Д., Баранов А.В., Кручинин С.Ю. Оптические свойства полупроводниковых квантовых точек. - СПб.: Наука, 2011. - 188 с.
Агранович В.М., Баско Д.М. // Письма в ЖЭТФ. - 1999. - Т. 69. - Вып. 3. - С. 232-235.