Mathematical modeling of diffusion-controlled processes of the near-surface layer structure evolution of W-Cu composite under high-temperature gas flow | Izvestiya vuzov. Fizika. 2022. № 7. DOI: 10.17223/00213411/65/7/95

Mathematical modeling of diffusion-controlled processes of the near-surface layer structure evolution of W-Cu composite under high-temperature gas flow

The article presents the results of mathematical modeling of copper leakage from a near-surface layer with a thickness of about 30 microns of experimental samples of W-18% Cu composite (VD-MP brand) as a result of exposure to a high-temperature (1500 K) gas flow caused by the diffusion along the boundaries of tungsten grains (GB) from copper particles located in the volume and on the tungsten GB. The parameters of grain-boundary diffusion in the studied composite in the temperature range, when copper particles are in a liquid state, were evaluated. Using the known experimental data, the value of the high-temperature coefficient of grain-boundary diffusion of copper in the polycrystalline tungsten matrix of the composite under study is calculated within the framework of the constructed computer model. The value of the obtained coefficient D = 7∙10-10 m2/s turned out to be close to the corresponding one for diffusion in liquid copper.

Download file
Counter downloads: 30

Keywords

composite, copper, tungsten, microstructure, diffusion, mathematical modeling

Authors

NameOrganizationE-mail
Tokmacheva-Kolobova A.Yu.Institute of Problems of Chemical Physics of the Russian Academy of Sciencesanastasiia.misis@gmail.com
Tokmachev M.G.Lomonosov Moscow State Universitymiket@mail.ru
Yanovskii L.S.Institute of Problems of Chemical Physics of the Russian Academy of Sciencesyls@icp.ac.ru
Kolobov Yu.R.Institute of Problems of Chemical Physics of the Russian Academy of Scienceskolobov@icp.ac.ru
Всего: 4

References

Dong L.L., Ahangarkani M., Chen W.G., Zhang Y.S. // Int. J. Refract. Metals Hard Mater. - 2018. - V. 75. - P. 30-42. - DOI: 10.1016/j.ijrmhm.2018.03.014.
Колобов Ю.Р., Манохин С.С., Суриков Е.В., Яновский Л.С. // Изв. вузов. Физика. - 2021. - Т. 64. - № 4. - С. 63-66.
Zilberstein G. // Int. J. Refract. Metals Hard Mater. - 1998. - V. 16(1). - P. 71-75. - DOI: 10.1016/S0263-4368(98)00007-9.
Panichkina V.V., Pilipovskii Yu.L., Radchenko P.Ya., et al. // Soviet Powder Metallurgy and Metal Ceramics. - 1986. - V. 25(4). - P. 331-333. - DOI: 10.1007/BF00794419.
https://www.comsol.ru/comsol-multiphysics.
Druzhinin A.V., Rheingans B., Siol S., et al. // Appl. Surf. Sci. - 2020. - V. 508. - P. 145254. - DOI: 10.1016/j.apsusc.2020.145254.
Ловшенко Ф.Г., Ловшенко Г.Ф., Хина Б.Б., Лозиков И.А. // Литье и металлургия. - 2013. - No. 4. - P. 125-133. - URL: https://lim.bntu.by/jour/article/view/143/135.
 Mathematical modeling of diffusion-controlled processes of the near-surface layer structure evolution of W-Cu composite under high-temperature gas flow | Izvestiya vuzov. Fizika. 2022. № 7. DOI: 10.17223/00213411/65/7/95

Mathematical modeling of diffusion-controlled processes of the near-surface layer structure evolution of W-Cu composite under high-temperature gas flow | Izvestiya vuzov. Fizika. 2022. № 7. DOI: 10.17223/00213411/65/7/95