Investigation of the physical foundations of 3D-printing technology. Molecular dynamics modeling
The nonequilibrium phase transition - melting of nanosystems initiated by a volumetric heat source has been studied by the method of molecular dynamics (MMD). It is shown that at a critical level of the heat source power density, the melting phase transition process is carried out under nonequilibrium conditions of significant local overheating, and may be accompanied by the formation of a locally unstable microcrystal state and complex dynamics: the nucleation of phase transformation fronts, both on the surface and in the depth of the microcrystal volume. The crystallization of nanosystems obtained by modeling melting was also studied, the cooling of which was carried out by simulating the touch of a cold surface. Depending on the initial structural state of the system (fully molten or partially molten), various crystallization modes were observed. The conducted research provides an understanding of the physical processes occurring in nanosystems during melting and crystallization, which makes it possible to formulate requirements for the parameters of the heat source depending on the thickness of the sample layer being built up during 3D printing.
Keywords
molecular dynamics method,
volumetric heat source,
phase transition of melting and crystallization,
order parameter,
kinetic temperatureAuthors
Korostelev S.Yu. | Institute of Strength Physics and Materials Science of SB RAS | sergeyk@ispms.ru |
Slyadnikov E.E. | Institute of Strength Physics and Materials Science of SB RAS | eeslyadnikov@gmail.com |
Turchanovsky I.Yu. | Institute of Strength Physics and Materials Science of SB RAS | tur1959@mail.ru |
Всего: 3
References
Gibson I., Rosen D., Stuker B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping and Direct Digital Manufacturing. - N.Y.: Springer, 2015. - 498 p.
Additive Manufacturing for the Aerospace Industry / eds. F. Fores and R. Boyer. - Cambridge: Elsevier, 2019. - 465 p.
Osipovich K.S., Astafurova E.G., Chumaevskii A., et al. //j. Mater. Sci. - 2020. - P. 9258-9272.
Прибытков Г.А., Храмогин М.Н., Коржова В.В. // Физич. мезомех. - 2006. - T. 9. - № S1. - С. 185-189.
Лотков А.И., Псахье С.Г., Князева А.Г. и др. Наноинженерия поверхности. Формирование неравновесных состояний в поверхностных слоях материалов методами электронно-ионных плазменных технологий. - Новосибирск: Изд-во СО РАН, 2008. - 276 с.
Meisner S.N., Yakovlev E.V., Semin V.O., et al. // Appl. Surf. Sci. - 2018. - V. 437. - P. 217-226.
Cahn J.W., Hilliard J.E. //j. Chem. Phys. - 1958. - V. 28. - P. 258-267.
Alain Karma, Wouter-Jan Rappel // Phys. Rev. E. - 1996. - V. 53. - Iss. 4. - P. 3017-3020.
Ji-Qin Li, Tai-Hsi Fan, Takashi Taniguchi, Bi Zhang // Int. J. Heat and Mass Transfer. - 2018. - V. 117. - P. 412-424.
Khomich V.Yu., Shmakov V.A. // Physics-Uspekhi. - 2015. - V. 58. - P. 455-465.
Жвавый С.П. // ЖТФ. - 2000. - Т. 70. - Вып. 8. - С. 58-62.
Ubbelohde A.R. Molten State of Matter: Melting and Crystal Structure. - John Wiley & Sons Ltd., 1978. - 470 p.
Landau L.D., Lifshitz E.M. Course of Theoretical Physics. V. 5. Statistical Physics. - 3 edition. - Butterworth-Heinemann, 1975. - 544 p.
Haken H. Synergetik. - Berlin; Heidelberg; New York: Springer Verlag, 1982. - 439 p.
Слядников Е.Е., Турчановский И.Ю., Каминский П.П.// Изв. вузов. Физика. - 2020. - Т. 63. - № 4. - С. 150-158.
Shugurov A.R., Panin A.V., Dmitriev A.I. et al. // Phys. Mesomech. - 2021. - V. 24. - P. 185-195.
Лагарьков A.H., Сергеев В.M. // УФН. - 1978 - Т. 125 - С. 409-448.
Samsonov V.M., Kharechkin S.S., Gafner S., et al. // Crystallogr. Rep. - 2009. - V. 54. - Iss. 3. - P. 526-531.
Chen Q., Zhou Y., Tian Z., et al. // Mod. Phys. Lett. B. - 2019. - V. 33. - Iss. 31. - P. 1950392
Korostelev S.Yu., Slyadnikov E.E., Turchanovskii I.Yu. // AIP Conf. Proc. - 2016. - V. 1783. - P. 020105.
Korostelev S.Yu., Slyadnikov E.E., Turchanovskii I.Yu. // AIP Conf. Proc. - 2020. - V. 2310. - P. 020159.
Thompson Aidan P., Metin Aktulga H., Berger Richard, et al. // Comput. Phys.Commun. - 2022. - V. 271. - P. 108171.
Mishin Y., Mehl M.J., Papaconstantopoulos D.A., et al. // Phys. Rev. B. - 2001. - V. 63. - P. 224106.
Berendsen H.J.C., Postma P.M., van Gunsteren W.F., et al. //j. Chem. Phys. - 1984. - V. 81. - P. 3684.
Sanchez J.A., Menguc M.P., et al. // Phys. Rev. B. - 2007. - V. 76. - P. 224104.
Briels W.J., Tepper H.L. // Phys. Rev. Lett. - 1997. - V. 79. - P. 5074.
Mazhukin V.I., Shapranov A.V. // Preprints of the Keldysh Institute of Applied Mathematics. - 2012. - No. 31. - 27 p.
Deng L., Zhang X., Wang L., et al. // Comput. Mater. Sci. - 2018. - V. 143. - P. 195-205.
Efraín Urrutia Bañuelos, Claudio Contreras Aburto, Amir Maldonado Arce //j. Chem. Phys. - 2016. - V. 144. - Р. 094504.
Stukowski A. // Modell. Simulat. Mater. Sci. Eng. - 2010. - V. 18. - Р. 015012.