Anisotropy of the Grüneisen coefficient determining the “thermal” part of the pressure in the equations of state of a deformable solid body | Izvestiya vuzov. Fizika. 2022. № 8. DOI: 10.17223/00213411/65/8/62

Anisotropy of the Grüneisen coefficient determining the “thermal” part of the pressure in the equations of state of a deformable solid body

The modeling of deformation processes under shock loading of a barrier made of single-crystal zinc is carried out taking into account the anisotropy of the thermal and cold parts of pressure. The anisotropy of the cold part of the pressure is determined by different values of the linear compression moduli, depending on the direction. The anisotropy of the thermal part of the pressure is determined by the anisotropy of the Grüneisen coefficients. Using the example of a single-crystal zinc barrier, it is shown that the use of anisotropic pressure in the mathematical model makes it possible to explain the effect of the absence of the release of an elastic precursor earlier than a plastic compression wave on the rear surface of the barrier in the [0001] direction under the conditions of full-scale experiments. Numerical simulation of shock loading of a barrier made of a single crystal of zinc by an aluminum impactor was carried out by the dynamic finite element method in a three-dimensional formulation at the Debye temperature.

Download file
Counter downloads: 22

Keywords

Grüneisen coefficient, property anisotropy, equation of state, single crystal, dynamic loading

Authors

NameOrganizationE-mail
Krivosheina M.N.Institute of Strength Physics and Materials Science of SB RASmarina_nkr@mail.ru
Tuch E.V.Institute of Strength Physics and Materials Science of SB RASelenatuch@yandex.ru
Всего: 2

References

Абдуллаев Н.А. // ФТТ. - 2001. - 43. - 4.
Беломестных В.Н., Теслева Е.П. // Известия Томского политехнического университета. - 2003. - № 306. - С. 5.
Беломестных В.Н., Теслева Е.П. // ЖТФ. - 2004. - Т. 74. - Вып. 8. - С. 140-142.
Степовик А.П.// ПМТФ. - 2005. - Т. 46. - № 6. - С. 171-179.
Новикова С.И. Тепловое расширение твердых тел. - М.: Наука, 1974. - 292 с.
Богач А.А., Канель Г.И., Разоренов С.В. и др. // ФТТ. - 1998. - Т. 40. - С. 1676-1680.
Жарков В.Н., Калинин В.А. Уравнения состояния твердых тел при высоких давлениях и температурах. - М.: Наука, 1968. - 310 с.
Cairns A.B., Goodwin A.L. // Chem. Phys. - 2015. - V. 17. - Iss. 32. - P. 20449-20465. - DOI: 10.1039/ c5cp00442j.
Anderson Ch.E., Cox P.A., Johnson G.R., Maudlin P.J. // Comput. Mech. - 1994. - V. 15. - P. 201-223.
Mason W.P. // Physical Acoustics: Principles and methods / V. III. Pt. B: Lattice Dynamics. - N.Y.; London: Academic Press, 1965.
Кривошеина М.Н., Туч Е.В. // Изв. вузов. Физика. - 2020. - Т. 63. - № 9. - С. 63-67. - DOI: 10.17223/00213411/63/9/63.
Vignjevic R., Djordjevic N., Panov V. // IJoP. - 2012. - V. 38. - P. 47-85
Tuch Е.V. // AIP Conf. Proc. - 2018. - V. 2051. - Art. 020312. - DOI: 10.1063/1.5083555.
Razorenov S.V., Garkushin G.V., Savinykh A.S., et al. // Phys. Mesomech. - 2022. - V. 25. - P. 26-32.
 Anisotropy of the Grüneisen coefficient determining the “thermal” part of the pressure in the equations of state of a deformable solid body | Izvestiya vuzov. Fizika. 2022. № 8. DOI: 10.17223/00213411/65/8/62

Anisotropy of the Grüneisen coefficient determining the “thermal” part of the pressure in the equations of state of a deformable solid body | Izvestiya vuzov. Fizika. 2022. № 8. DOI: 10.17223/00213411/65/8/62